

"Skinning: Real-time Shape Deformation" Course

Mesh Animation Decomposition and Compression

Zhigang Deng

UNIVERSITY of HOUSTON

Example-based Skinning Decomposition

• Input

- Output
 - Without skeleton:
 - With skeleton:

Skinning Weights

Example-based Skinning Decomposition

- Background/Motivations
 - Availability and affordability of performance capture
 - Reusing a small set of example poses for editing/

Marker-based mocap with dense markers [Park and Hodgins 2006]

Performance Capture of InteractingAny 3Characters with Handheld KinectsAuthor

Any 3D model Authoring tools

[Ye et al. 2012] [Mohr and Gleicher

[Mohr and Gleicher 2003] Weta Digital's Tissue System

Example-based Skinning Decomposition

- Applications
 - Animation editing

Compression, hardware-accelerated skinning

6 DoFs

3 DoFs

Skinning Weight Reduction & Compression

- Motivation
 - Impose the sparseness constraint on the weights
 - Maximally retaining the visual quality

Review: Linear Blend Skinning Yellow Vertex deformed The deformed Rotation of while manipulating position bone *j* of vertex *i* the Red Bone Rest pose position on vertex *i* $\mathbf{v}_{t,i}' = \sum_{j=1}^{m} w_{ij} (\mathbf{R}_{t,j} \mathbf{v}_i + \mathbf{T}_{t,j})$ Influence of bone *j* on vertex i Translation of bone *j*

Skinning Weights

Example-based Skinning Decomposition

- Definition (inverse of LBS problem)
 - Automatically extract the LBS model from example poses

- Several selected skinning decomposition methods
 - Skinning mesh animation (SMA) [James and Twigg 2005]
 - Fast and efficient skinning of animated meshes (FSD) [Kavan et al. 2010]
 - Smooth skinning decomposition with rigid bones (SSDR) [Le and Deng 2012]

Problem Formulation

• A constrained least squares optimization problem $\min_{\mathbf{W},\mathbf{R},\mathbf{T}} E = \min_{\mathbf{W},\mathbf{R},\mathbf{T}} \sum_{t=1}^{S} \sum_{i=1}^{n} \left\| \mathbf{v}_{t,i}' - \sum_{j=1}^{m} w_{ij} (\mathbf{R}_{t,j} \mathbf{v}_i + \mathbf{T}_{t,j}) \right\|^2$

Subject to: $w_{ij} \ge 0, \forall i, j$ Non-negativity constraint $\sum_{j=1}^{m} w_{ij} = 1, \forall i$ Affinity constraint $|\{w_{ij}|w_{ij} \ne 0\}| \le K, \forall i$ Sparseness constraint

 $\mathbf{R}_{t,j}^{\mathsf{T}}\mathbf{R}_{t,j} = \mathbf{I}, \det \mathbf{R}_{t,j} = 1, \forall t, j$ Orthogonal constraint

- Constraints used in different methods
 - SSDR and SMA can handle the orthogonal constraint

General Pipeline

Clustering-based Bone Initialization

- Goal
 - Initialize proxy bones from example poses
- Algorithms
 - <u>Mean shift clustering</u> (SMA): without explicitly specifying # of bones.
 - <u>Multiple source region growing</u> (FSD): efficient.
 - <u>K-means clustering</u> (SSDR): assuming each vertex is driven by one bone only.

image courtesy of [kavan et al 2010]

K-means clustering in SSDR method

Optimization of Skinning Parameters

- Single-pass strategy in the SMA method
 - Identify influence bones per vertex (a fixed number)
 - Having the smallest squared error when predicting deformed position of vertex *i* alone.

 $e_{ij} = \sum_{t=1}^{S} ||\mathbf{v}_{t,i}' - [\mathbf{R}_{t,j}|\mathbf{T}_{t,j}]\mathbf{v}_{i}||_{2}^{2}, \qquad j = 1 \cdots m$

- Estimate bone-vertex weights
 - A constrained least squares problem

 $\sum_{j \in \mathfrak{B}_i} \left([\mathbf{R}_{t,j} | \mathbf{T}_{t,j}] \mathbf{v}_i \right) w_{ij} = \mathbf{v}'_{t,i}, \qquad t = 1 \cdots S \qquad \sum_j w_{ij} = 1$

- Multi-pass (Iterative) strategy in FSD and SSDR
 - Iteratively update bone transformations and skinning weights
 - only describe the algorithm in SSDR in this course

SSDR: Update Skinning Weights

 $\min_{\mathbf{W},\mathbf{R},\mathbf{T}} E = \min_{\mathbf{W},\mathbf{R},\mathbf{T}} \sum_{t=1}^{S} \sum_{i=1}^{n} \left\| \mathbf{v}_{t,i}' - \sum_{j=1}^{m} w_{ij} (\mathbf{R}_{t,j} \mathbf{v}_i + \mathbf{T}_{t,j}) \right\|^2$

SSDR: Update Bone Transformations

 $\min_{\mathbf{W},\mathbf{R},\mathbf{T}} E = \min_{\mathbf{W},\mathbf{R},\mathbf{T}} \sum_{t=1}^{S} \sum_{i=1}^{n} \left\| \mathbf{v}_{t,i}' - \sum_{j=1}^{m} w_{ij} (\mathbf{R}_{t,j} \mathbf{v}_i + \mathbf{\Gamma}_{t,j}) \right\|^2$

SSDR: Skinning Weights Update

• Per vertex solver: Constrained Linear Least Squares

$$W_i^{\mathsf{T}} = \arg \min_x ||Ax - b||^2$$

Subject to: $x \ge 0$ \longrightarrow Non-negativity Constraint
 $||x||_1 = 1$ \longrightarrow Affinity Constraint
 $||x||_0 \le |K|$

- Speed up the Active Set Method [Lawson and Hanson]
 - Pre-compute LU factorization of $A^{\mathsf{T}}A$ and $A^{\mathsf{T}}b$
 - Pre-compute QR decomposition of $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^{\mathsf{T}}$

SSDR: Skinning Weights Update

Per vertex solver: Constrained Linear Least Squares

$$W_i^{\mathsf{T}} = \arg\min_x ||Ax - b||^2$$

Subject to: $x \ge 0$

$||x||_1 = 1$ $||x||_0 \le |K|$ \rightarrow Sparseness Constraint

• Weight pruning of bones with small contribution

$$e_{ij} = \|w_{ij}(\mathbf{R}_{t,j}\mathbf{v}_i + \mathbf{T}_{t,j})\|^2$$

Keep |K| bones with largest e_{ij} and solve the LS again

Refer to the Course Note for more detailed explanation of the non-negative least squares solver with affinity constraint

SSDR: Bone Transformations Update

• Per example pose solver $E^{t} = \min_{\mathbf{R}_{t,j} | \mathbf{T}_{t,j}, j=1 \dots m} \sum_{i=1}^{n} \left\| \mathbf{v}'_{t,i} - \sum_{j=1}^{m} w_{ij} (\mathbf{R}_{t,j} \mathbf{v}_{i} + \mathbf{T}_{t,j}) \right\|^{2}$ Subject to: $\mathbf{R}_{t,j}^{\mathsf{T}} \mathbf{R}_{t,j} = \mathbf{I}$ det $\mathbf{R}_{t,j} = 1, \forall t, j \rightarrow \mathsf{Nonlinear Constraint}$

Levenberg-Marquardt optimization [Marquardt 1963]
 Optimized solution
 Slow

Absolute Orientation (a.k.a. Procrustes Analysis)
 [Kabsch 1978; Horn 1987]
 Fast
 Approximate solution

 Solution: Solve bone transformation one-by-one to minimize the deformation residual of remaining bones

 Solution: Solve bone transformation one-by-one to minimize the deformation residual of remaining bones

Linear solver, fast, and simple

Near optimized solution

- Solution: Solve bone transformation one-by-one to minimize the deformation residual of remaining bones
 - ✓ Linear solver, fast, and simple
 - ✓ Near optimized solution

- Solution: Solve bone transformation one-by-one to minimize the deformation residual of remaining bones
 - ✓ Linear solver, fast, and simple
 - ✓ Near optimized solution

- Solution: Solve bone transformation one-by-one to minimize the deformation residual of remaining bones
 - ✓ Linear solver, fast, and simple
 - ✓ Near optimized solution

 Solution: Solve bone transformation one-by-one to minimize the deformation residual of remaining bones

Linear solver, fast, and simple
 Near optimized solution

- Solution: Solve bone transformation **one-by-one** to minimize the deformation residual of remaining bones
 - ✓ Linear solver, fast, and simple
 - ✓ Near optimized solution

Before

• The residual q_i^t for bone \hat{j}

$$E_{\hat{j}}^{t} = \sum_{i=1}^{n} \left\| \mathbf{v}_{t,i}' - \sum_{j=1, j \neq \hat{j}}^{m} w_{ij} (\mathbf{R}_{t,j} \mathbf{v}_{i} + \mathbf{T}_{t,j}) - \overline{w_{i\hat{j}} (\mathbf{R}_{t,\hat{j}} \mathbf{v}_{i} + \mathbf{T}_{t,\hat{j}})} \right\|^{2}$$

$$q_{i}^{t}$$
Bone \hat{j} out

Now find the rigid transformation

$$\mathbf{v}_{i} \xrightarrow{\left(\mathbf{R}_{t,\hat{j}}, \mathbf{T}_{t,\hat{j}}\right)} q_{i}^{t}$$

SSDR: Rigid Bones versus Flex Bones

Comparisons of Different Skinning Decomposition Methods

Ground truth

Comparisons of Different Skinning Decomposition Methods

Comparisons of Different Skinning Decomposition Methods

Dataset[No. of bones]	Approximation error E_{RMS}			Execution time (minutes)		
	SMA	LSSP	SSDR	SMA	LSSP	SSDR
camel-collapse ₁₁	125.3 (4)	-	5.4(1.7)	13.8	-	7.4
cat-poses ₂₅	8.5 (3.1)	6.2(3.3)	3.4(1.4)	0.7	371.7	1.5
chickenCrossing ₂₈	12.5 (4.2)	6.2(5.1)	8.1(5.4)	14.1	1165.4	24
horse-gallop33	9.5 (1.5)	12.5(4.6)	2.2(1.1)	3.8	911	9.8
lion-poses ₂₁	62.8 (5.7)	7.7(3.9)	4.4(2.2)	0.6	360.2	0.8
pcow ₂₄	24.8 (13.2)	7.2(6.7)	5.7(4.8)	3.8	564.5	8.9
pdance ₂₄	3.8 (1.6)	3.4(2.3)	1.3(0.8)	22	2446.8	28.3

Result in parentheses: rank-5 EigenSkin correction [Kry et al. 2002]

Example-based Skeleton Extraction

• Concept

- Directly extract skeleton from example poses
- Minimize the example pose reconstruction error, while handling rotational joint constraint
- Categories of method
 - Single-pass methods [Schaefer and Yuksel 2007; de Aguiar et al. 2008a; Hasler et al. 2010]
 - ✔ Fast and efficient
 - ✗ Redundant bones in skeleton
 - ★ Accumulated errors in skeleton
 - Multi-pass methods [Le and Deng 2014]
 - **X** Slow and more computational time
 - Accurate and robust skeleton

Results from an implementation of [Hasler et al. 2010]

Single-pass Methods

- Initialization
 - Proxy bones and skinning weights
- Skeleton construction
 - Linking bones to a tree-structure
 - Joint positions calculation
 - Computing joint position

Single-pass: Initialization

- Generating bone transformations and skinning weights
 - Similar to the example-based skinning decomposition
- Initialization algorithms
 - Example-based skinning decomposition (SSDR, FSD, SMA, LSSP, etc)
 - Spectral clustering [de Aguiar et al. 2008a]
 - Seed vertices drive the segmentation of nearly rigid parts.
 - Edge collapsing [Schaefer and Yuksel 2007]
 - Bottom-up hierarchical clustering strategy
Single-pass: Skeleton Reconstruction

- A weighted graph **G**
 - Nodes correspond to bones
 - Cost of edge

$$g(j,k) = \frac{\sum_{t=1}^{S} \left\| \left([\mathbf{R}_{t,j} | \mathbf{T}_{t,j}] - [\mathbf{R}_{t,k} | \mathbf{T}_{t,k}] \right) \begin{bmatrix} \mathbf{0}_{jk} \\ 1 \end{bmatrix} \right\|_{2}^{2}}{\sum_{i=1}^{n} w_{ij} w_{ik}}$$

Numerator: Joint constraint value

Denominator: Weight blending of 2 bones

- Minimum spanning tree algorithm
 - [Kirk et al. 2005; Schaefer and Yuksel 2007; de Aguiar et al. 2008; Hasler et al. 2010]

Single-pass: Joint Position Solver

• Joint position solver [Anguelov et al. 2004]

$$\min_{\mathbf{o}_{jk}} \sum_{t=1}^{S} \left\| \left([\mathbf{R}_{t,j} | \mathbf{T}_{t,j}] - [\mathbf{R}_{t,k} | \mathbf{T}_{t,k}] \right) \begin{bmatrix} \mathbf{o}_{jk} \\ 1 \end{bmatrix} \right\|_{2}^{2} + \mu \left\| \mathbf{g}_{j} + \mathbf{g}_{k} - 2\mathbf{o}_{jk} \right\|_{2}^{2}$$

Distance between the joint and the centroid of two bones

Multi-pass Method

• Iterative rigging strategy [Le and Deng 2014]

Multi-pass Method

Multi-pass: Objective Function

 $\min_{\mathbb{S},\mathbf{o}_{jk},w_{ij},[\mathbf{R}_{t,j}|\mathbf{T}_{t,j}]} E = E_D + \omega E_S + \lambda E_J$

Where:

$$E_{D} = \frac{1}{nS} \sum_{i=1}^{n} \sum_{t=1}^{S} \left\| \sum_{j=1}^{m} w_{ij} [\mathbf{R}_{t,j} | \mathbf{T}_{t,j}] \begin{bmatrix} \mathbf{v}_{i} \\ 1 \end{bmatrix} - \mathbf{v}'_{t,i} \right\|_{2}^{2} \qquad \text{Data}$$
Term

$$E_{S} = \sum_{j=1}^{m} \mathbf{w}_{j}^{\mathsf{T}} \mathbf{L} \mathbf{w}_{j}$$

$$E_{J} = \frac{1}{S} \sum_{(j,k) \in \mathbb{S}} \sum_{t=1}^{S} \left\| \left([\mathbf{R}_{t,j} | \mathbf{T}_{t,j}] - [\mathbf{R}_{t,k} | \mathbf{T}_{t,k}] \right) \begin{bmatrix} \mathbf{o}_{jk} \\ 1 \end{bmatrix} \right\|^{2}$$
 Joint
Some traints

Subject to:

$$w_{ij} \ge 0, \ \sum_{j=1}^{m} w_{ij} = 1, \ \|w_i\|_0 \le K(=4), \ \forall i, j$$

 $\mathbf{R}_{t,j}^{\mathsf{T}} \mathbf{R}_{t,j} = \mathbf{I}, \ \det \mathbf{R}_{t,j} = 1, \ \forall j, t$

$\min E = E_D + \omega E_S + \lambda E_J$ Multi-pass: Data Term

• Data Term

- Minimizing reconstruction error w.r.t. Weights & Bone transformations [Le and Deng 2012]
- No skeletal structure

$$E_{D} = \frac{1}{nS} \sum_{i=1}^{n} \sum_{t=1}^{S} \left\| \sum_{j=1}^{m} w_{ij} [\mathbf{R}_{t,j} | \mathbf{T}_{t,j}] \begin{bmatrix} \mathbf{v}_{i} \\ 1 \end{bmatrix} - \mathbf{v}_{t,i}^{\prime} \right\|_{2}^{2}$$
Input
examples bone transformations
Skinning weights

$\min E = E_D + \omega E_S + \lambda E_J$ Multi-pass: Weight Regularization Term

- Skinning Weight Regularization Term
 - No regularization: Fracture due to weights sparseness constraint or noisy input data
 - Our rigidness Laplacian regularization: Smooth, deformation sensitive $E_{n} = \sum_{i=1}^{m} w_{i}^{T} \mathbf{I} w_{i}$

$\min E = E_D + \omega E_S + \lambda E_J$ Multi-pass: Joint Constraint Term

- Joint Constraint Term
 - Minimizing deviations of the joint locations after applying bone transformations

Recovering articulated object models from 3D range data [Anguelov et al. 2004]

Multi-pass: Joint Constraint

No Joint Constraint

With Joint Constraints

Multi-pass: Skeleton Pruning

- Over-completed clustering (for bones) at the initialization step
 - Difficult to avoid (true # of bones is unknown)
 - Lead to unnecessary redundant bones in the skeleton

Multi-pass: Skeleton Pruning

Multi-pass: Results

Input (48 poses)

Skeleton (27 bones)

Skinning Weights

COMPARISONS horse-gallop 8431 vertices 48 example poses 27 bones

Comparisons

Dataset	N	F	B	Method I		Method II		Method III		Method IV	
				Time	RMSE	Time	RMSE	Time	RMSE	Time	RMSE
cat-poses	7207	9	28	5.8	0.25	0.1	0.68	6.9	1.04	17.2	0.63
horse-poses	8431	10	27	7.7	0.21	0.2	0.54	6.2	1.24	20.0	0.75
lion-poses	5000	9	30	4.1	0.27	0.1	0.83	4.0	1.62	11.7	1.14
horse-gallop	8431	48	27	41.9	0.22	0.8	0.44	33.3	1.10	80.3	0.88
hand	7997	43	18	65.1	0.18	0.6	0.23	20.0	0.42	41.9	0.18
dance	7061	201	16	148.7	0.22	2.5	0.76	61.8	0.78	168.0	0.53
scape	12500	70	23	252.1	0.42	1.7	1.03	60.7	1.18	410.4	1.24
samba	9971	175	22	348.2	0.56	3.3	1.29	95.1	1.57	296.0	1.79
COW	2904	204	11	72.3	1.52	1.0	5.41	16.0	5.61	47.9	5.58

Lowest RMSE

Comparisons

Ground Truth Met

Method IMethod IIMethod III[Le and Deng 2014][Schaefer and Yuksel 2007][de Aguiar et al. 2008a]

Method IV [Hasler et al. 2010]

Skinning Weights Reduction

- Weights in linear surface deformation
 - Non-negativity and/or affinity constraints
 - Locality
 - A small number of bones (or control points) per vertex
 - Weights decrease w.r.t. distance between vertex and the bone (or control point).

 $\mathbf{v}_i' = \sum_j w_{ij} \mathbf{c}_j$

(cage-based deformation)

$$\mathbf{v}_i' = \sum_{j=1}^m w_{ij} [\mathbf{R}_j | \mathbf{T}_j] \mathbf{v}_i$$

(linear blend skinning)

Skinning Weights Reduction

• Discrete optimization: $|\{w_{ij}|w_{ij} eq 0\}|\leq |K|, orall i$

- Difficult to find optimum solution
- High pay-off for non-optimum solution
 - Fracture
 - Significant increase of computing cost: nK non-zero $\rightarrow n(K+1)$ non-zero
- Pros and Cons
 - Speed up skinning efficiency significantly (in particular, GPUs)
 - Loss of skinning visual quality (in particular, exceptional vertices)

exceptional vertices

Image courtesy of [Landreneau and Schaefer 2010], @EG 2010

Two-layer Sparse Compression of Dense Skinning Weights

- Positioning
 - Speed up skinning efficiency
 - Maximally maintain visual quality
- Idea
 - Two-layer blending
 - Caching similar blending operations

Two-layer Sparse Compression

• Input: Skinning weights \rightarrow dense matrix

Two-layer Sparse Compression

$\bigstar \underline{\textbf{Compression:}} \mathbf{W} \approx \mathbf{D} \mathbf{A}$

- Dictionary **D**, and sparse coefficients **A**
- $\operatorname{card}(\mathbf{D}) + \operatorname{card}(\mathbf{A}) \leq \operatorname{card}(\mathbf{W})$

- Virtual Bones
 - Cache similar transformation
 - Use as basis
- Sparse Virtual Bone Blending
 - Keep the number of bones/vertex as small as possible
 (2 bones/vertex)

Two-layer Sparse Compression

$$\min_{D,A} \Delta_W^2 = \min_{D,A} \frac{1}{kn} \|DA - W\|_F^2$$

Subject to: $\operatorname{card}(d_i) \le c, \forall i \longleftarrow c = \max\{\operatorname{card}(w_i)\} + 1$
 $\operatorname{card}(\alpha_i) \le 2, \forall i \longleftarrow \begin{cases} n \text{ is very large}\\ \operatorname{card}(A) = 2n \to \min \end{cases}$

Preliminaries: Sparse Decomposition

• Definition

 Given multi-dimensional observed data and a dictionary matrix, estimate a sparse vector that satisfies a linear system of equations,

• Applications

 Image processing, audio processing, data compression, denoising, etc.

Preliminaries: Sparse Coding

• Definition

- Solving the optimal sparse vector *a* given the dictionary *D*
- L_0 norm and L_1 norm regularization
- Algorithms
 - Matching pursuit algorithm [Mallat and Zhang 1993]
 - Orthogonal matching pursuit algorithm [Tropp and Gilbert 2007, Cai and Wang 2011]

 $\min_{\mathbf{a} \in \mathbb{R}^m} \frac{1}{2} \|\mathbf{x} - \mathbf{D}\mathbf{a}\|_2^2 \qquad \text{subject to} \quad \|\mathbf{a}\|_0 \le L$

Sparse coding with L₀ norm regularization

Preliminaries: Dictionary Learning

Two-layer: Sparse Matrix Decomposition Solver

Two-layer: Update Dictionary **D**

• Online learning with warm restart

[Mairal et al. 2010]

$$\begin{split} \Phi &= \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{a}_{i}^{\mathsf{T}} = [\phi_{1}, \dots, \phi_{m}] \in \mathbb{R}^{q \times q} \\ \Gamma &= \sum_{i=1}^{n} \mathbf{w}_{i} \mathbf{a}_{i}^{\mathsf{T}} = [\gamma_{1}, \dots, \gamma_{m}] \in \mathbb{R}^{m \times q} \\ \mathbf{d}_{j} \leftarrow \frac{1}{a_{jj}} (\gamma_{j} - \mathbf{D}\phi_{j}) + \mathbf{d}_{j} \end{split}$$
• Result d_{j} is normalized to have the unit length

Two-layer: Update Coefficients A

- (per vertex) Linear least squares with 2 unknowns
- $\min_{\substack{(\alpha_i)_r \\ (\alpha_i)_s}} \|d_r(\alpha_i)_r + d_s(\alpha_i)_s w_i\|_2^2 \text{ s.t. } (\alpha_i)_r + (\alpha_i)_s = 1$
- Use mesh smoothness assumption to quickly find the non-zero candidates (virtual bones)

Summary

- Example-based skinning decomposition
 - Inverse problem of LBS, extracting the LBS model from a small set of example poses
 - Handling joint constraint for skeleton extraction
- Skinning weight reduction and compression
 - Speed up skinning efficiency esp. on GPUs
 - Balance the trade-off between efficiency and quality

Thank you for attention!

- Executable code/files of
 - Smooth skinning decomposition with rigid bones [Le and Deng 2012],
 - Skeletal rigging from mesh sequences [Le and Deng 2014],
 - two-layer sparse compression of dense skinning weights [Le and Deng 2013]

are available at the link below.

http://graphics.cs.uh.edu/ble/progs/skinning/