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Example-based Skinning Decomposition

* Input

* Qutput
— Without skeleton:

— With skeleton: +

Skeleton

% Skinning

Weights




Example-based Skinning Decomposition

* Background/Motivations
— Availability and affordability of performance capture
— Reusing a small set of example poses for editing/

Marker-based mocap with Performance Capture of Interacting  Any 3D model
dense markers Characters with Handheld Kinects ~ Authoring tools
[Park and Hodgins 2006] [Ye et al. 2012] [Mohr and Gleicher 2003] Weta Digital's Tissue System




Example-based Skinning Decomposition

* Applications
— Animation editing

CPUs Ramevamony

— Mesh segmentation
— Collision detection

— Skin retargeting H




Skinning Weight Reduction & Compression

* Motivation
— Impose the sparseness constraint on the weights

— Maximally retaining the visual quality
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Review: Linear Blend Skinning
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while manipulating
the Red Bone
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Example-based Skinning

Decomposition
e Definition (inverse of LBS problem)
— Automatically extract the LBS model from example poses

* Several selected skinning decomposition methods
— Skinning mesh animation (SMA) [James and Twigg 2005]
— Fast and efficient skinning of animated meshes (FSD) [Kavan et al. 2010]
— Smooth skinning decomposition with rigid bones (SSDR) [Le and Deng 2012]



Problem Formulation

* A constrained least squares optimization problem 5
S n m
1 p— 1 / —_— P . . .
W B = iy 2D Ve = 2w (Rugvi + Tug)
t=1 1=1 71=1
Subject to: w;; > 0,Vi, 7 Non-negativity constraint
m
Z wi; = 1,V4 Affinity constraint
j=1
{w;j|wi; # 0} < K, Vi Sparseness constraint
Rt,jTRt,j =L detR;; =1,V¢, ) Orthogonal constraint

* Constraints used in different methods
— SSDR and SMA can handle the orthogonal constraint



General Pipeline

Optimization of Skinning
Parameters

Clustering-based
‘ Bone - Bone transformations

Initialization < update
/f

Skinning weights
update




Clustering-based Bone Initialization

e Goal

— Initialize proxy bones from
example poses
e Algorithms

— Mean Shiﬁ' C/ustering (SMA) image courtesy of [kavan et al 2010]\
without explicitly specifying # of
bones.

— Multiple source region growing
(FSD): efficient. ® ‘t‘ ®
— K-means clustering (SSDR):
assuming each vertex is driven by e © o o
one bone onIy. K-means clustering in SSDR method




Optimization of Skinning Parameters

Single-pass strategy in the SMA method

— ldentify influence bones per vertex (a fixed number)

* Having the smallest squared error when predicting deformed position
of vertex j alone.

€ij = Ztszl ||V1,57, — [Rt,j|Tt,j]Vi||%7 g =1---m
— Estimate bone-vertex weights
* A constrained least squares problem
> jem, (Rt j|Tejlvi)wi; =vy,, t=1---8 > jwi; =1

Multi-pass (lterative) strategy in FSD and SSDR

— Iteratively update bone transformations and skinning weights
e only describe the algorithm in SSDR in this course



Iterative Optimization in SSDR

n m
. . /
min F = min g E V-—g w; i (R v, + T
W.R,T W.R,T £yt ij (Re Vi )
t=1 i=1 j=1

Subject to: w;; > 0,V1, 7 e T = |
m f‘“\ 2 @ ng @@5 oo B {%‘ &ent
> wig = 1,Vi Block Cooré %len"a‘te\DgiSy

{wijlwi; # 0} < K, Vi
R;;'R;; =1,detRy; = 1,1,
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SSDR: Update Bone Transformations
minw g1 F = minw RT3 11 > iy HVQ,Z- — D1 Wiy (z' + ||2

Update B



SSDR: Skinning Weights Update

« Per vertex solver: Constrained Linear Least Squares
W;' = arg min || Az — b||?

Subject to:|z = O

>Non-negativity Constraint

lxll, =1

—> Affinity Constraint

[xllo = [K]

» Speed up the Active Set Method [Lawson and Hanson]

— Pre-compute LU factorization of

AT A and ATp

— Pre-compute QR decompositionof [1 1 --- 1]



SSDR: Skinning Weights Update

« Per vertex solver: Constrained Linear Least Squares
W;' = arg min || Az — b||?

Subject to: * = O
|lz[l; =1

[xllo = [K]

— Sparseness Constraint

« Weight pruning of bones with small contribution

eij = |lwi; (Re;vi + T )|I°
Keep |K| bones with largest e;; and solve the LS again

Refer to the Course Note for more detailed explanation of the non-negative least

squares solver with affinity constraint




SSDR: Bone Transformations Update

* Per example pose solver ]
Vi — 2 e wij(Re vy + Tt,j)H

t G : S
E" = mingr, T, ;,j=1---m i=1 ’

Subject to: [Re; Rej =1Idet Ry ; = 1,vt, 7> Nonlinear Constraint

@ Levenberg-Marquardt optimization [Marquardt 1963]
‘/Optimized solution % Slow

€ Absolute Orientation (a.k.a. Procrustes Analysis)

[Kabsch 1978; Horn 1987]
Fast ¥ Approximate solution



SSDR: Bone Transformations Solver

Solution: Solve bone transformation one-by-one to
minimize the deformation residual of remaining bones

v/ Linear solver, fast, and simple . .

v Near optimized solution P

Rest pose Example pose
Weights

o—F

Green bone M Red bone




SSDR: Bone Transformations Solver

« Solution: Solve bone transformation one-by-one to
minimize the deformation residual of remaining bones
v/ Linear solver, fast, and simple Ve
4 Near optimized solution




SSDR: Bone Transformations Solver

« Solution: Solve bone transformation one-by-one to

minimize the deformation residual of remaining bones
v/ Linear solver, fast, and simple
4 Near optimized solution
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SSDR: Bone Transformations Solver

« Solution: Solve bone transformation one-by-one to

minimize the deformation residual of remaining bones
v/ Linear solver, fast, and simple
4 Near optimized solution
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SSDR: Bone Transformations Solver

Solution: Solve bone transformation one-by-one to

minimize the deformation residual of remaining bones
v/ Linear solver, fast, and simple
4 Near optimized solution

F 4+ + + + + + + + + + + +
+
F 4+ + + + + + + + + + + +




SSDR: Bone Transformations Solver

Solution: Solve bone transformation one-by-one to

minimize the deformation residual of remammg bones
v/ Linear solver, fast, and simple 7
4 Near optimized solution




SSDR: Bone Transformations Solver

« Solution: Solve bone transformation one-by-one to
minimize the deformation residual of remaining bones
v/ Linear solver, fast, and simple
4 Near optimized solutio

Before After



SSDR: Bone Transformations Solver

« The residual g: for bone 7

™m

_
Vi — 2 =125 Wi (Re v + Ty ;) —hw;s (R, ;v + T, 5 )

1\ D
Y !

(]f ~
Bone J out

B = Z:'L:l

J

* Now find the rigid transformation

\' (RtJ , Tej t

7




SSDR: Bone Transformations Solver

SSDR method

Weighted Absolute Orientation

Bt = Z?:l
\ )
Y

Bone blending

Different obje

2
HVQ,Z- — 20w (R vy + Tt,j)H

Et=3>"", Z}n:l winV;:,q; — (R, v + Tt,j)H2
T 1\ J
Y
No blending

e functions!



A Toy Example

Weighted Absolute Orientation




SSDR: Rigid Bones versus Flex Bones

Groundtruth : Flex Bones : Rigid Bones :
7 N \




Comparisons of Different Skinning
Decomposition Methods

SSDR method [Le and Deng 2012]

P

Ground truth SMA SSDR  Ground truth



Comparisons of Different Skinning
Decomposition Methods

Learning Skeletons for Shape and Pose (LSSP)
[HasIer et al. 2010]

SSDR method [Le and Deng 2012]

round truth
LSSP SSDR  Ground truth



Comparisons of Different Skinning
Decomposition Methods

DatasetI No. of bones]

Approximation error £ p s s

Execution time (minutes)

SMA LSSP SSDR sMA | LSSP SSDR
camel-collapseq ¢ 125.3 (4) - 5.4(1.7) 13.8 - 7.4
cat-posesos 8.5(3.1) 6.2(3.3) 3.4(1.4) 0.7 | 371.7 1.5
chickenCrossingos | 12.5 (4.2) 6.2(5.1) 8.1(5.4) 14.1]1165.4 24
horse-gallopss 9.5(1.5) 12.5(4.6) 2.2(1.1) 3.8 11 9.8
lion-posess 62.8(5.7) | 7.7(3.9) 4.4(2.2) 0.6 | 360.2 0.8
pcowoyg 24.8 (13.2)| 7.2(6.7) 5.7(4.8) 3.8 | 564.5 8.9
pdanceoy 3.8(1.6) 3.4(2.3) 1.3(0.8) 22 12446.8 28.3

Result in parentheses: rank-5 EigenSkin correction [Kry et al. 2002]
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Part IlI:
Skinning Weights Reduction & Compression




Example-based Skeleton Extraction

* Concept
— Directly extract skeleton from example poses

— Minimize the example pose reconstruction error, while handling rotational
joint constraint

e (Categories of method
— Single-pass methods [Schaefer and Yuksel 2007; de Aguiar et al. 2008a; Hasler et al.
2010]
v/ Fast and efficient
¥ Redundant bones in skeleton
%8 Accumulated errors in skeleton
— Multi-pass methods [Le and Deng 2014]
® Slow and more computational time
¢/ Accurate and robust skeleton

Results from an implementation of [Hasler et al. 2010]



Single-pass Methods

|* Initialization

— Proxy bones and skinning weights
e Skeleton construction
1 — Linking bones to a tree-structure

Joint positions calculation
— Computing joint position

Skinning
Decomposition
Unorgafize@Bone

Example Poses Transformations with Weights Skeleton

Apply
Joint
Constraints




Single-pass: Initialization

* Generating bone transformations and skinning
weights
— Similar to the example-based skinning decomposition
* |nitialization algorithms

— Example-based skinning decomposition (SSDR, FSD, SMA,
LSSP, etc)

— Spectral clustering [de Aguiar et al. 2008a]
* Seed vertices drive the segmentation of nearly rigid parts.

— Edge collapsing [Schaefer and Yuksel 2007]
e Bottom-up hierarchical clustering strategy



Single-pass: Skeleton Reconstruction

A weighted graph G

— Nodes correspond to bones

— Cost of edge
=5, <[Rt,j|Tt,j][Rt,k|Tt,k]> [O{’C}

g(J, k) = D i Wij Wik

2

Numerator: Joint constraint value
Denominator: Weight blending of 2 bones

* Minimum spanning tree algorithm

— [Kirk et al. 2005; Schaefer and Yuksel 2007; de Aguiar et al. 2008; Hasler et
al. 2010]



Single-pass: Joint Position Solver

* Joint position solver [Anguelov et al. 2004]

2

0 .
([Rt,j|Tt,j] — [Rt,k|Tt,k]> [ ik} + pllgs + gr — 2055
2 \ )

\ J Y
v Distance between the joint and

the centroid of two bones

. )
ming thl

Joint constraint term



Multi-pass Method

* |terative rigging strategy [Le and Deng 2014]

/ Ugdatex

Skeletal topology
Joints positions

Update
Skinning weights

wra nsfo rW




Multi-pass Method

Input

Animated Mesh Sequence

[ (1) nitialization |

[ (2) Topology ]

Reconstruction

1

(3) Iterative Rigging

Update Skinning Weights

Update Joint Positions

Update Bone Transformations

Yes

Skeleton
Pruning

Maximum
iterations are
not reached

Maximum
iterations are

reached outgut

Skeleton & Joint Positions
Skinning Weights & Bone Trans.



Multi-pass: Objective Function

minS70jk,wij,[Rt,j|Tt,j] F =Fp+wFEs + \NE;

Where: ; . 5 Data
Ep — s S50, S0 || wn R ] [ ] - v _—

2
FEs=3>"", w; TLw, Weights
Smoothness

2

j Joint

E; = & ; il ([R Gl Tt 5] — [Rt,k|Tt7k]> [ng}
S Z(j,k)es Zt_l t,7 t,7 1 Gonstraints

Subject to:
wi; = 0, >0 wi; =1, lwillg = K(=4), Vi, j
R,;, R;,; =1I, detR;; = 1, Vj,t



min £ = |[EFp|l+ wklks + ANE;

Multi-pass: Data Term

e Data Term

— Minimizing reconstruction error w.r.t. Weights &
Bone transformations [Le and Deng 2012]

— No skeletal structure

n S ™m Vi
Bp = s S0 S5 || Sy ws R 1] | Y] - i

[RIT]

\* &
% %
e ® :
’&l X Bone transfarmations
I \"A% P & &

Skinning weights




min £ = Fp + wWEs|+ ANE

Multi-pass: Weight Regularization Term

e Skinning Weight Regularization Term

— No regularization: Fracture due to weights sparseness
constraint or noisy input data

— Our rigidness Laplacian regularization: Smooth, deformation
sensitive

No Regularization

ggg.

w=0 w =107 w =107 Where: N (7) denotes all the 1-ring neighbors of vertex 4

_N—™ T
Fs = ijl w;  Lw,;

Rigidness Laplacian Regularization

1 ifk =7

_ dig e -
Lilf, — Zhe.}\/’(i) i if k & N(Z)

0 otherwise.

Evaluated on all example poses ( f= 1..F) >d;k



min £ = Fp +wkFks + NE

Multi-pass: Joint Constraint Term

 Joint Constraint Term

— Minimizing deviations of the joint locations after
applying bone transformations
Ey = % Z(j,k)eS Ztszl

Oy, is the joint position
in the rest pose
—
Bone j Oy Bone k
Rest Pose

Example Pose ¢

Recovering articulated object models from 3D range data [Anguelov et al. 2004]



Multi-pass: Joint Constraint

No Joint Constraint With Joint Constraints



Multi-pass: Skeleton Pruning

e Over-completed clustering (for bones) at the
initialization step
— Difficult to avoid (true # of bones is unknown)
— Lead to unnecessary redundant bones in the skeleton

=)

nIaallization

eleton



Multi-pass: Skeleton Pruning

% n
@@xx\‘\gé Remove bone j if Zwijz < 107 2M
\%*“gﬁ e
@9 &Q‘ where: M — max{ wik2}
\N\@\ 2 ;




Multi-pass: Skeleton Pruning

46 clusters 72 clusters 98 clusters




Multi-pass: Results

Input (48 poses) Skeleton (27 bones) Skinning Weights



COMPARISONS
horse-gallop
8431 vertices

48 example poses




Comparisons

Dataset Nl FlB M(?thodl Method II Méthod II1 Me.thod 1AY
Time| RMSE| Time| RMSE| Time| RMSE|  Time| RMSE
cat-poses | 7207 9(28| 5.8/0.25/0.1]0.68| 6.9/1.04] 17.2/0.63
horse-poses | 8431| 1027 7.7 0.21/0.2(0.54| 6.2|1.24| 20.0]0.75
lion-poses 5000{ 9(30| 4.110.27|0.1{0.83| 4.0/1.62| 11.7/1.14
horse-gallop| 8431| 48|27 41.910.22/0.8]|0.44(33.3|1.10] 80.3]|0.88
hand 7997| 43[18| 65.1{0.18/0.6|0.23|20.0/0.42| 41.9/0.18
dance 7061(201|16{148.7{0.22]2.5(0.76]61.8|0.78|168.0/0.53
scape 12500 70(23|252.110.42/1.7|1.03]|60.7{1.18|410.4/1.24
samba 9971(175|22(348.210.56(3.3|1.29(95.1/1.57|296.0(1.79
cow 2904(204(11| 72.3|1.52/1.0{5.41{16.0|5.61| 47.9|5.58

Lowest RMSE




Comparisons

Aidd

Ground Truth  Method | Method Il Method IV
[Le and Deng 2014] [Schaefer and Yuksel 2007] [deAgwaret aI 2008a] [Hasler etal. 2010]
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Skinning Weights Reduction

* Weights in linear surface
deformation

— Non-negativity and/or affinity
constraints
— Locality
* A small number of bones (or
control points) per vertex V,’L. — Z;’Ll Wi [Rj|Tj]Vz'
* Weights decrease w.r.t. distance

between vertex and the bone (or
control point).

/ _— o o .
Vi = Zj WijCj

(cage-based deformation)

(linear blend skinning)



Skinning Weights Reduction

* Discrete optimization: Hwij’wz‘j 75 0}’ < ‘K|,VZ
— Difficult to find optimum solution
— High pay-off for non-optimum solution
* Fracture

* Significant increase of computing cost: nK non-zero = n(K+1) non-zero
 Pros and Cons
— Speed up skinning efficiency significantly (in particular, GPUs)
— Loss of skinning visual quality (in particular, exceptional vertices)

Not reduced k Largest Geometric Smooth 'Weights Poisson

Image courtesy of [Landreneau and Schaefer 2010], @EG 2010



Two-layer Sparse Compression of
Dense Skinning Weights

* Positioning

mance >

— Speed up skinning efficiency ¢

— Maximally maintain visual :
quality

* Idea ”/((“"\p( by
— Two-layer blending N
— Caching similar blending jﬂf :ﬁf e
operations .

Perfo
4
<
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[
o
[»)
[1




Two-layer Sparse Compression
* Input: Skinning weights = dense matrix

Bone Transformations

et

Blending

Vertices



Two-layer Sparse Compression

** Compression: W =~ DA
— Dictionary D, and sparse coefficients A
— card(D) + card(A) << card(W)

Master Bone Trans.
Master Bone Blending
® © ® ©® O itual Bone Trans.
Virtual Bone Blending

000000000000 00600 oo e \ertex Transformations
Compressed Skinning Model




Two-layer Sparse Compression

Master Bone

Dense Master Bone Blending
) | Virtual Bone

+ Virtual Bone Blending]
Vertex

* Virtual Bones
— Cache similar transformation
— Use as basis

e Sparse Virtual Bone Blending

— Keep the number of bones/vertex as small as possible
(2 bones/vertex)



Two-layer Sparse Compression

W/ L 4 Master Bone
Dense Master Bone Blending
© 0 @ ® ©® ® O VitualBone

+ Virtual Bone Blending]
Vertex

Master Bones Master Bones + Virtual Bones



Two-layer Sparse Compression

tgll
|

1
min Aw” = min — |DA — W||7,
D, A D.,A kn

Subject to: card(d;) < ¢,Vi <= c=max{card(w,)}+1
card(ai) < 2,Vi ..,{n is very large

card(A)=2n—min



Preliminaries: Sparse Decomposition

e Definition
— Given multi-dimensional
observed data and a
dictionary matrix, estimate a
sparse vector that satisfies a
linear system of equations, @ @
* Applications
— Image p.rocessing, audio D|ct|onary sparse
processing, data Learning  Coding

compression, denoising, etc.



Preliminaries: Sparse Coding

* Definition
— Solving the optimal sparse vector a given the dictionary D
— Ly norm and L, norm regularization

e Algorithms
— Matching pursuit algorithm [Mallat and Zhang 1993]

— Orthogonal matching pursuit algorithm [Tropp and Gilbert
2007, Cai and Wang 2011]

mingerm 3||x — Dal|3  subject to [laljp < L

Sparse coding with L, norm regularization



Preliminaries: Dictionary Learning

* Definition
— Solving the optimal Dictionary D
D given the sparse vector a ming [ X — DA V5, bitL laillo < L

F
* Algorithms Sparse Coding
— K-SVD for Ly norm Use MP or OMP
regularization [Aharon et al. ZOOGJmmD x foajz v S@ lajllo < L
— Online dictionary learning for '
L, norm regularization [Mairal et
al. 2010]

Initialize

Dictionary
Update

Column-by-Column by
SVD computation




Two-layer: Sparse Matrix

e .
| s | ) el ) |

Alternative update D and A &=

(Block coordinate descent)
/ B——

(- —

¢

I A




Two-layer: Update Dictionary D

* Online learning with warm restart
[Mairal et al. 2010]

b = Zazaz (D1, ..., ]| € RIZ

I = szaz (V1y .y Ym] € R4

dj < o (7 — D¢;) +d;

— Result d; is normalized to have the unit length




Two-layer: Update Coefficients A

e (per vertex) Linear least squares with 2 unknowns

min Id(ai)r 4+ ds(ci)s —wil5 st (ai)y + (ai)s = 1

(a«i)s

* Use mesh smoothness

assumption to quickly gshered cotmun

. virtual bone
find the non-zero .

candidates (virtual bones)




VIRTUAL BONES DISTRIBUTION




~ REDUCTION WITHOUT EXAMPLE POSE
K-LARGEST SMOOTH OUR METHOD

[LANDRENEAU AND SCHAEFER 2010] (WITHOUT USING EXAMPLE POSE)

REDUCTION WITH EXAMPLE POQ(s

@ﬁ

GEOMETRY POISSON OUR METHOD

[JAMES AND TWIGG 2005] [LANDRENEAU AND SCHAEFER 2010] (WITH USING EXAMPLE POSES)




(XX}

[LANDRENEAU AND SCHAEFER 2010] (WITHOUT USING EXAMPLE POSE) [LE AND DENG 2012]

§
(XX

[JAMES AND TWIGG 2005] [LANDRENEAU AND SCHAEFER 2010] (WITH USING EXAMPLE POSES) [LE AND DENG 2012]




Summary

 Example-based skinning decomposition

— Inverse problem of LBS, extracting the LBS model from
a small set of example poses

— Handling joint constraint for skeleton extraction
e Skinning weight reduction and compression
— Speed up skinning efficiency esp. on GPUs
— Balance the trade-off between efficiency and quality



Thank you for attention!

 Executable code/files of

— Smooth skinning decomposition with rigid bones [Le and
Deng 2012],

— Skeletal rigging from mesh sequences [Le and Deng 2014],

— two-layer sparse compression of dense skinning weights [Le
and Deng 2013]

are available at the link below.

http://graphics.cs.uh.edu/ble/progs/skinning/



