
SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation

Mesh Animation Decomposition and Compression

Binh H. Le and Zhigang Deng

University of Houston

With the development of advanced computer vision and tracking techniques, deformed mesh sequences can be soundly reconstructed
by markerless performance capture [De Aguiar et al. 2008b; Vlasic et al. 2008; Vlasic et al. 2009; Stoll et al. 2010], or by motion
capture with dense markers [Park and Hodgins 2006; De Aguiar et al. 2007]. With the maturity of these high-quality capture
techniques, researchers in computer graphics community have also explored the concept of using example poses (i.e., a sequence
of deformed mesh frames) for character skinning, rigging and animation, which has become increasingly practical and useful
in entertainment practice. For example, proxy bones (or called bones for simplicity) and corresponding skinning weights can
be automatically extracted from a set of example poses [James and Twigg 2005; Kavan et al. 2010; Le and Deng 2012], and
the resulting bones and skinning weights can be potentially used for many applications including mesh animation compression,
hardware-accelerated skinning animation, collision detection, animation editing, and so on [James and Twigg 2005; Kavan et al.
2010]. Furthermore, different from a set of disconnected proxy bones, a skeletal rigging model can also be automatically extracted
from example poses [Schaefer and Yuksel 2007; Hasler et al. 2010; Le and Deng 2014]. Since the skeleton extracted from example
poses is compatible with game engines and popular animation software such as Maya and Blender, it can be directly used for various
animation editing, compression, and rendering applications, which could help to substantially reduce production cost in industry
practice.

In linear blend skinning (LBS) model (or cage-based deformation), the deformed position of a surface vertex is influenced by a set of
bones (or control points). Often, the number of bones that affect a vertex of the target mesh varies significantly, such as from one to
tens of them. Meanwhile, with the availability and affordability of high-precision 3D scanning and acquisition devices, dense 3D
mesh models with thousands or even millions of vertices have being commonly used in movie special effects, video games, and
other entertainment industry practices. Therefore, skinning high-resolution 3D meshes on off-the-shelf computers has become an
expensive computational task, in particular, for real-time graphics applications (such as video games) due to their real-time response
requirement. Fortunately, modern GPU hardware can provide an unprecedented computing capability to handle massive parallel data
processing. Researchers have strived to efficiently exploit the GPU computing power to accelerate skinning animation on GPU. In
particular, one intensively studied solution is to impose the sparseness constraint on the skinning weights [James and Twigg 2005;
Landreneau and Schaefer 2010; Le and Deng 2013] (that is, enforce no more than a fixed number of non-zero skinning weights for
any vertex), while maximally retaining the visual quality of the reduced skinning animation. This process is called skinning weight
reduction and compression.

In the remainder of the course note, we will first describe a number of recent example-based skinning decomposition techniques that
automatically extract proxy bones (flexible or rigid) and corresponding skinning weights from a set of example poses (Section 1).
Then, we will further describe recent skeleton extraction algorithms that automatically extract skeletal rigging models from example
poses (Section 2). Finally, we will describe a number of skinning weight reduction and compression approaches to balance the
trade-off between skinning efficiency and quality (Section 3).

1 Example-based Skinning Decomposition

A number of example-based skinning decomposition algorithms have been proposed in recent years, including skinning mesh
animation [James and Twigg 2005] (called SMA for brevity in this note), fast and efficient skinning of animated meshes [Kavan et al.
2010] (called FSD), learning skeleton for shape and pose [Hasler et al. 2010] (called LSSP), and smooth skinning decomposition
with rigid bones [Le and Deng 2012] (called SSDR). Since besides proxy bones and skinning weights, the LSSP method can further
extract skeleton from animated meshes, we leave its discussion to the follow-up Section 2. In this section, we primarily focus on the
methodologies of the SMA, FSD, and SSDR algorithms.

1.1 Problem Formulation

Example-based skinning decomposition (or called skinning decomposition from animated meshes) aims to solve the inverse problem
of the LBS model, that is, automatically estimating proxy bones and skinning weights from a set of example poses. Suppose we
have S example poses of a n-vertices model, where the coordinate of the i-th vertex in the t-th example pose is denoted as v′t,i, and
the coordinate of the i-th vertex at the rest pose is denoted as vi, a skinning decomposition method takes the positions of vertices,
{v′t,i : t = 1 · · ·S, i = 1 · · ·n}, as the input, and decomposes them to the bone transformations (assuming a total of m proxy bones)

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

and the bone-vertex weight map, i.e. {wij}, {Rt,j}, and {Tt,j} in the right hand side of the following LBS formula (Eq. (1)).

v′t,i =

m∑
j=1

wij(Rt,jvi + Tt,j) (1)

The example poses V can be considered as a n× S matrix, where each element is a 3× 1 vector representing the 3D coordinate of a
vertex in an example pose. The output of the skinning decomposition algorithm is the bone-vertex influence map W = {wij} and
the bone transformations B = {Rt,j ,Tt,j}mj=1. W is a sparse, non-negative n×m matrix, where wij denotes the influence of the
j-th bone on the i-th vertex and the sum of elements in any row equals to 1. The transformation matrix of the j-th bone in the t-th
example pose is [Rt,j |Tt,j], where Rt,j denotes the 3× 3 rotation matrix and Tt,j denotes the 3× 1 translation vector.

In this way, skinning decomposition can be formulated as a constrained least squares optimization problem in terms of the following
example pose reconstruction error:

min
W,R,T

E = min
W,R,T

S∑
t=1

n∑
i=1

∥∥∥∥∥v′t,i −
m∑
j=1

wij(Rt,jvi + Tt,j)

∥∥∥∥∥
2

(2a)

Subject to: wij ≥ 0, ∀i, j (2b)
m∑
j=1

wij = 1,∀i (2c)

|{wij |wij 6= 0}| ≤ K,∀i (2d)

The objective function E in Eq. (2a) is the squared sum of the reconstruction errors for all the vertices for all the example poses.
E is minimized subject to three hard constraints: the non-negativity constraint, Eq. (2b); the affinity constraint, Eq. (2c); and the
sparseness constraint (K is often set to 4 in practice), Eq. (2d), are imposed on the bone-vertex influences.

Note that the three methods (SMA, FSD, and SSDR) have a similar problem formulation in principle (Eq. (2)), but they differ in the
following main aspect: The FSD method does not impose any constraint onto the rotation part of bone transformations, {Rt,j},
while the SSDR and SMA methods can impose one additional orthogonal (rigid bone) constraint (Eq. (3)) to {Rt,j}, although they
handle the orthogonal constraint differently (specifically, the orthogonal constraint is treated as a soft constraint in the SMA method,
while the orthogonal constraint is handled as a hard constraint in the SSDR method).

Rt,j
TRt,j = I,detRt,j = 1,∀t, j (3)

The orthogonal constraint in Eq. (3) ensures all the matrices, {Rt,j}, in the rotation group (i.e. the special orthogonal group
SO(3,R) in the 3D Euclidean space).

1.2 Pipeline

The general pipeline of solving the above formulated optimization problem roughly consists of the following two steps:

• Clustering-based bone initialization, including necessary data preprocessing. As the first step, a clustering approach is applied
to example poses at triangle or vertex level to obtain an initial estimation of proxy bones. Its outcomes (the initialized proxy
bones) are either further refined through a follow-up iterative optimization process [Kavan et al. 2010; Le and Deng 2012]
or are directly used as an input to the next estimation step [James and Twigg 2005]. In addition, as a preprocessing step,
the FSD method [Kavan et al. 2010] introduces a technique to reduce the dimension of the problem space to improve its
efficiency, based on the observation that many vertex trajectories in the example poses can be well approximated as linear
combinations of a set of representative vertex trajectories, and thus these vertices (and their trajectories) can be bypassed
during the optimization solving process (refer to [Kavan et al. 2010] for more technical details).

• Optimization of skinning parameters. In both the FSD and SSDR methods, based on the initialized bones, an iterative
optimization strategy is used to alternatively refine the bone transformations and skinning weights while continuously reducing
the reconstruction error, E in Eq. (2). In the SMA method, the initialized bone transformations are used to determine
an optimal influence set for each vertex (in order to satisfy the above sparseness constraint) and then further solve the
corresponding skinning weights for each vertex. An iterative optimization process is not employed in the SMA method.

2 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

1.3 Preliminaries

In recent example-based skinning decomposition approaches [James and Twigg 2005; Hasler et al. 2010; Kavan et al. 2010; Le and
Deng 2012], block coordinate descent and non-negative least squares solvers are often employed or extended to solve the formulated
optimization problems. For the sake of readability and completeness, in this course note we briefly describe preliminary knowledge
of block coordinate descent and non-negative least squares with affinity constraint.

1.3.1 Block Coordinate Descent

Gradient Descent, also known as steepest descent, is one of the most widely known optimization methods [Snyman 2005]. Let f(x)
be a multivariable function that has continuous first partial derivatives on Rn, and its gradient Of(x) is a n-dimensional vector. The
line search direction d in the gradient descent method is computed as −Of(x). If d satisfies Of(x)Td < 0, f(x) can be improved
with a sufficiently small step size α.

Different from the above gradient descent method, Coordinate Descent method takes the search direction d as ei (or −ei),
where ei = [0, · · · , 0, 1, 0, · · · , 0] has 1 at its i-th position and 0 at other positions [Snyman 2005]. In other words, at each step
f(x1, · · · , xn) is minimized with respect to one variable xi while the other variables are held fixed. There are different strategies to
select the coordinates:

• Gauss-Southwell. At each iteration the coordinate that has the largest absolute value is selected as the search direction d.

• Cyclic coordinate. The coordinate variables to be optimized are x1, · · · , xn, x1, · · · , xn, etc.

• Double sweep. The order of searched coordinate variables is x1, · · · , xn, and then, xn, · · · , x1, then repeat.

• Cyclic with permutation. The coordinate variable order is random in each cycle.

• Random sampling. Pick a random coordinate variable at each iteration.

The convergence properties of the coordinate descent method [Tseng 2001] are in general poorer than the gradient descent method, it
can be a suitable and useful method if the optimization for each coordinate is simple to implement. Furthermore, if the minimization
with respect to one coordinate variable is much cheaper to compute, then the overall efficiency of the coordinate descent method
could be still high, specifically when high correlations among coordinate variables do not exist.

Block Coordinate Descent (BCD) method, as a natural extension of the coordinate descent method, minimizes the objective
function with respect to a block of coordinates at each iteration [Bertsekas 1999]. In other words, the coordinates are partitioned into
a number of blocks and, at each iteration, f is minimized with respect to one of the coordinate blocks while the other coordinates are
held fixed.

Assume an objective function for minimization is defined as follows:

min f(x) := f(x1, · · · ,xm), where xi ∈ Xi,∀i = 1, · · · ,m, and X = X1 × X2 × · · · × Xm (4)

The general process of the BCD method is executed in the following way.

1. Initialization: Choose any x0 = (x0
1, · · · ,x0

m) ∈ X.

2. Iteratively optimize f until convergence: For the (r + 1)-th iteration (r ≥ 0), given xr = (xr1, · · · ,xrm) ∈ X, choose an
index s ∈ {1, · · · ,m} using one of the above block coordinate selection strategies, and compute xr+1 that satisfies the
following:

xr+1
s = arg min

ξ∈Xs

f(xr1, · · · ,xrs−1, ξ,x
r
s+1, · · · ,xrm) (5)

xr+1
j = xrj , ∀j 6= s (6)

BCD Convergence Theorem. Let f be continuously differentiable over X := ×mi=1Xi. Further, assume for each block i and x ∈ X,
the minimum of

min
ξ∈Xi

f(x1, · · · ,xi−1, ξ,xi+1, · · · ,xm)

is uniquely achieved. Every limit point of the BCD sequence {xk} is a stationary point of f . [Proof is omitted for brevity.]

Corollary. If f is also convex (besides being continuously differentiable over X), then every limit point of the BCD sequence {xk}
is a global minimum. The BCD method may not converge (i.e. cycle indefinitely), if the number of coordinate blocks is > 2 and f is
a non-convex function.

3 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Two-blocks BCD Convergence Theorem [Grippo and Sciandrone 2000]. Let f(x) := f(x1,x2), where x ∈ X1 × X2, be
continuously differentiable, and X1, X2 be closed and convex. Assume that both the BCD subproblems have solutions, and that the
sequence X has limit points. Then, every limit point of X is stationary.

1.3.2 Non-negative Least Squares with Affinity Constraint

In example-based skinning decomposition, the skinning weights {wij} are updated by fixing other variables (e.g., the skeleton, joint
positions, bone transformations, and other) to find the optimized {wij} subject to the non-negativity and the affinity constraints
(Eq. (13)). Thus, often the building block for the skinning weights update is a constrained linear least squares as follows (Eq. (7)).

Wi
T = arg min

x
‖Ax− b‖2 (7)

Subject to: x ≥ 0

Jx = 1,J = (1, 1, . . . , 1)

The above problem (Eq. (7)) is a particular case of the general linear least squares with equality and inequality constraints, in which
the equality constraint could be in a form of Cx = d and the inequality constraint could be in a form of Ex > f . One widely-used
solution to the general linear least squares problem is the Active Set Method (ASM) [Gill et al. 1981].

The performance of the classical ASM solver is slow since it involves many iterations to find the true active set (i.e. a subset of
constraints that are exactly satisfied). Each iteration needs to solve one unconstrained linear least squares problem corresponding to
the current active set and then change one constraint from the active set to the inactive set or vice versa. Starting from an estimation
of the active set, the algorithm stops when the true active set is found. Based on the original ASM solver [Gill et al. 1981; Bjorck
1996; Nocedal and Wright 2000], Le and Deng [2012] make the following two modifications (the new solver is called Fast Active
Set Method (FASM) in this course note):

1. The first modification is to initialize a feasible solution only at the first run: x = (1/n)JT and the corresponding active setW .
Later, the FASM algorithm uses the value of x from the previous run as the initial value at the next run. Note that since the
main block coordinate descent algorithm (Algorithm 3) updates the bone-vertex influences at every iteration and converges to
the optimal solution, it is assumed that the value of x and the active set will not be changed significantly at the next iteration.
Thus, re-using the solution at the previous step for initialization would save unnecessary computational effort. Actually, a
similar idea was successfully used for aircraft control allocation [Harkegard 2002].

2. The second modification is to pre-compute the cross products A = ATA and B = ATb, since the solution of the
unconstrained linear least squares Ax = b is the same as that of ATAx = ATb. Thus, the least squares p =
arg min ‖A(x + p)− b‖2 with equality constraint Jp = 0 and active set constraint pi = 0, ∀i ∈ W via A and B,
can be solved. By doing so, each iteration on the active set needs to solve the linear least squares with the size of the unknowns
x, regardless the number of equations. Specifically, the number of unknowns equals to the number of desired bones, which is
typically much smaller than the number of equations (i.e., the number of input example poses). Note that both A and B can
also be used to compute the Lagrange multipliers in Eq. (8).

As described in Algorithm 1, the FASM algorithm [Le and Deng 2012] first initializes a feasible solution x = (1/n)JT and its
corresponding active setW (line 3). At each iteration (line 5 to 25), it first solves the descent direction p for all pi with i-th constraint
active (line 6). Here the constraint Jp = 0 is enforced to ensure the moving of x in the direction of p would satisfy the equality
constraint J(x + αp) = 1. If x + p ≥ 0, we move the current solution by p, i.e. let x← x + p (line 8), otherwise, the current
solution is moved by x← x + αp with the maximum step α > 0 and update the active setW (line 17 to line 23).

In line 9 to 15, the KKT conditions, Eq. (8) [Kuhn and Tucker 1951; Bertsekas 1999; Nocedal and Wright 2000], are used to check
the optimum of the current solution x. Using these KKT conditions, the Lagrange multiplier λi for each constraint i /∈ W can be
calculated. In this equation, each unknown λi corresponds to the inequality constraint xi ≥ 0 and the unknown µ ∈ R corresponds
to the equality constraint Jx = 1. Since the equality constraint Jx = 1 is always true, there are at most n − 1 active inequality
constraints. Thus, the system of equation (Eq. (8)) is never under-determined. In addition, the solution x always satisfies all the
constraints, and Eq. (8) is always consistent.

[
JT I

] [µ
λ

]
= AT(Ax− b) (8)

λi = 0,∀i /∈ W

Handling Equality Constraints

In the above Algorithm 1, a sub-problem of linear least squares with equality constraint Jp = 0 (zero-sum) (line 6) needs to be
solved. This problem can be solved by a direct elimination method, which removes the constraint by transforming the problem to
a lower dimension, such as one unknown is set to be p1 = −

∑n
i=2 pi as proposed in [Mohr and Gleicher 2003]. However, this

4 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Algorithm 1 Active Set Algorithm for Linear Least-Squares with Equality and Inequality Constraints

Require: A ∈ Rm×n,b ∈ Rm

Ensure: x∗ = argmin ‖Ax− b‖2 subject to x ≥ 0 and Jx = 1

1: A ← ATA

2: B ← ATb

3: Initialize a feasible solution x = 1/nJT if necessary
4: Initialize active (working) setW ← {i|xi = 0}
5: loop
6: Solve p = argmin ‖A(x + p)− b‖2 s.t. Jp = 0 and pi = 0, ∀i ∈ W viaA and B by algorithm 2
7: if x + p ≥ 0 then
8: x← x + p

9: Compute the Lagrange multipliers λ asscociated withW by equation (8)
10: if λi ≥ 0, ∀i then
11: return x∗ ← x is the optimal solution
12: else
13: i∗ ← argmini∈W λi

14: W ←W\i
15: end if
16: else
17: α← −maxi/∈W xi/pi
18: if α ≤ 0 then
19: return x∗ ← x is the optimal solution
20: else
21: xi ← xi + αpi, ∀i
22: W ← {i|xi = 0}
23: end if
24: end if
25: end loop

solution would change the cost function and thus may break the convergence of the main algorithm. Instead, the FASM algorithm
[Le and Deng 2012] uses an orthogonal projection to preserve the cost function [Bjorck 1996].

Suppose the goal is to solve for x′ in the linear least squares with h equality constraints (Eq. (9)).

min
x′

∥∥A′x′ − b′
∥∥2 subject to C′x′ = d′ (9)

x′ ∈ Rk,C′ ∈ Rh×k

Direct elimination is performed via the following QR decomposition:

C′
T

= QR = [Q1︸︷︷︸
h

| Q2︸︷︷︸
k−h

]

[
R1

0

]
subject to QQT = I

Let

QTx′ =

[
y
z

]
⇔ x′ = Q

[
y
z

]
We have

d′ = C′x′ = RTQTx′ = RT

[
y
z

]
= R1

Ty

and

A′x′ = A′QQTx′ = A′[Q1|Q2]

[
y
z

]
= A′Q1y + A′Q2z

Then, the problem (Eq. (9)) becomes an unconstrained linear least squares:

5 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

min
z

∥∥A2z− (b′ −A1y)
∥∥2

Where: A1 = A′Q1

A2 = A′Q2

RT
1y = d′

x′ = Q

[
y
z

]

The solution to this unconstrained linear least squares is:

z = (A2
TA2)−1A2

T(b′ −A1y) (10)

Applying the above calculations and transformations to the particular problem of linear least squares with equality constraints in line
6 of Algorithm 1 can further simplify all the equations and achieve Algorithm 2. Here k = n− |W| unknowns need to be solved,
and each unknown corresponds to an inactive inequality constraint. The matrix A′ contains all columns of A with indexes not inW ,
b′ = b−A′x, C′ = J{k} = (1, 1, . . . , 1) ∈ Rk, and d′ = 0.

The QR decomposition of C′ = J{k} can be pre-computed as follows:

J{k}
T

= Q{k}R{k} =
[
Q
{k}
1 |Q{k}2

]
R{k}

1
1
1
1
...
1

︸︷︷︸
J{k}T

=

α
α
α
α
...
α︸ ︷︷ ︸

Q
{k}
1

α α α · · · α
δ γ γ · · · γ
γ δ γ · · · γ
γ γ δ · · · γ
...

...
...

. . .
...

γ γ γ · · · δ

︸ ︷︷ ︸

Q
{k}
2 ∈Rk×(k−1)

ρ
0
0
0
...
0

︸︷︷︸
R{k}

(11)

Here: α = −1/
√
k, δ = γ + 1, γ =

−1

k +
√
k
, ρ = −

√
k

In Algorithm 2, the two matrix products A2
TA2 and A2

T(b′ −A1y) in Eq. (10) can be represented via the pre-calculated matrices
A = ATA and B = ATb. The final simplified calculations are shown in lines 1 to 7 of Algorithm 2, where Ã = A2

TA2 and
B̃ = A2

T(b′ −A1y).

Algorithm 2 Linear Least-Squares with Zero-Sum Constraint

Require: A ∈ Rn×n,B ∈ Rn, x ∈ Rn,W ⊆ {1 . . . n}
Ensure: p = argmin ‖A(x + p)− b‖2 subject toA = ATA,
B = ATb, Jp = 0 and pi = 0, ∀i ∈ W

1: B′ ← B −Ax

2: AW ← Rows and columns ofA with indexes not inW
3: BW ← Rows of B′ with indexes not inW
4: Compute Q

{k}
2 ∈ Rk×(k−1) by the QR decomposition in Eq. (11), where k = n− |W|

5: Ã ← Q
{k}
2

T
AWQ

{k}
2

6: B̃ ← Q
{k}
2

T
BW

7: p̃← Ã−1B̃
8: pW ← Q

{k}
2 p̃

9: return p← Corresponding rows of pW , other rows are 0

1.4 Clustering-based Bone Initialization

The purpose of this initialization step is to roughly estimate proxy bones from example poses. A clustering approach is typically
employed for this step, for example, mean shift clustering in the SMA method, multiple source region growing in the FSD method,
and K-means clustering in the SSDR method. For non-iterative skinning decomposition methods (e.g., the SMA method), it is

6 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

critical for this initialization step to obtain robust bone transformations that are used as the input to the rest pipeline. While for
iterative optimization based methods (e.g., the FSD method and the SSDR method), since the initialized bones and weights will be
iteratively refined through the follow-up optimization process that blends away the differences between different initializations at the
end, as noted by Kavan and colleagues [Kavan et al. 2010].

Mean Shift Clustering. In the SMA method [James and Twigg 2005], the 3 × 3 rotation matrix of a triangle j in each example
pose, relative to the rest pose, is first extracted via polar decomposition of its deformation gradient [Sumner and Popović 2004], and
then the rotation matrices of the same triangle in all the example poses are vectorized and concatenated to a high-dimensional data
point, zj ∈ R9S . Then, given {zj}, a fixed bandwidth mean shift algorithm [Cheng 1995] is employed to adaptively cluster {zj} to
clusters based on the following sample point estimator:

f(z) =
1

n

n∑
j=1

k(‖z− zj
h
‖2), (12)

where h is the user-specified bandwidth of a spherically symmetric kernel function, k(�). The computed gradient of f(z) is used in a
hill climbing process to map each data point, zj , to the nearest stationary point, z̄j . Based on each discovered z̄j , its associated
core triangles can be identified to compute the corresponding bone transformation. As noted by James and Twigg [2005], the main
advantages of mean shift clustering for initial bone estimation include: (1) it is robust to outliers, and (2) the number of the resulting
clusters does not need to be specified explicitly, but indirectly controlled via a physically meaningful, scaling parameter, h.

Multiple Source Region Growing. This clustering method is used in the FSD method [Kavan et al. 2010] to initialize the proxy bones.
It starts by selecting P seed triangles uniformly distributed on the rest pose [Kavan et al. 2007], and each cluster is assumed to be
contiguous and initialized with the vertices of the seed triangle; then, for the vertices immediately adjacent to each cluster, their
prediction errors are computed based on the deformation gradients of the cluster, and the vertex with the minimum error is chosen to
append to the cluster. This process repeats until all the vertices are assigned to certain clusters. To this end, a bone transformation is
further computed based on the vertices in the same cluster. The main benefit of this clustering method is its efficiency.

K-Means Clustering. At the initialization step of the SSDR method [Le and Deng 2012], the deformation is assumed to be as rigid as
possible [Alexa et al. 2000; Igarashi et al. 2005], that is, each vertex is influenced by exactly one bone and its bone-vertex weight is
exactly 1. Then, the initialization problem becomes clustering n vertices into |B| = m clusters (m is specified by users), and all the
vertices in one cluster follows the same rigid transformation. In this way, the initialization of proxy bones can be straightforwardly
converted to a K-means clustering problem: clustering n vertices into m clusters, and then for each cluster, solving for its rigid bone
transformation based on the vertices in the same cluster.

1.5 Optimization of Skinning Parameters

Once the bones are initialized, the next step of skinning decomposition is to optimize the involved skinning parameters (that is,
{Rt,j}, {Tt,j} and W). In the SMA method [James and Twigg 2005], for each surface vertex, its optimal set of influence bones is
identified first, and then the skinning weights are solved per vertex using constrained least squares (details can be found at Section
3.3 of this course note and [James and Twigg 2005]). By contrast, both the FSD method and the SSDR method employ iterative
optimization algorithms to refine the skinning parameters, and they share similar spirit in principle. In this note, we will only detail
the iterative optimization algorithm used in the SSDR method that is based on the aforementioned BCD framework.

To solve the formulated constrained least squares problem (Eq. (2)), the SSDR method [Le and Deng 2012] employs a BCD algorithm
with m+ 1 blocks where one block is the bone-vertex influences W and the remaining blocks are m bone transformations. After a
feasible solution is initialized, for each iteration, the objective function is optimized with respect to one block while the other blocks
are held fixed. For convenience, the optimization of all the bone transformations optimization is done sequentially and grouped as
one big block update step. Through iterations the two blocks are alternatively updated until the objective function converges to a
local minimum. Finally, the rest pose is corrected by the linear least squares solver proposed by Kavan and colleagues [Kavan et al.
2010]. The whole process is detailed in Algorithm 3, where each update step (bone-vertex weights update or bone transformations
update) decreases the objective function in order to ensure the convergence of the algorithm.

Algorithm 3 Smooth Skinning Decomposition with Rigid Bones (SSDR)

Require: V = {v′t,i}, P = {vi}, m, K
Ensure: W = {wij}, B = {Rt,j |Tt,j}mj=1 subject to Eq. (2)

1: Initialize bone transformations B
2: repeat
3: Update bone-vertex weight map W
4: Update bone transformations B
5: until Convergence OR Maximum iterations are reached
6: Correct the rest pose P
7: return W, B, and P

7 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

1.5.1 Skinning Weights Update

In the SSDR method, the bone-vertex weight map W is updated (with fixed B) by finding the optimized W subject to the non-
negativity constraint, Eq. (2b), the affinity constraint, Eq. (2c), and the sparseness constraint, Eq. (2d). Specifically, W is optimized
per vertex by solving the constrained least squares for each line Wi as follows:

Wi
T = arg min

x
‖Ax− b‖2 (13)

Subject to: x ≥ 0

‖x‖1 = 1

‖x‖0 ≤ K

Instead of selecting a subset of associated bones for each vertex prior to computing its approximation error [Mohr and Gleicher 2003;
James and Twigg 2005; Kavan et al. 2010], the SSDR method associates K out of m bones for each vertex by first solving the linear
least squares with non-negativity constraint (x ≥ 0) and affinity constraint (‖x‖1 = 1), and then removing m−K bone weights
with least effect to the solution. Finally, the linear solver is performed one more time with the remaining K bone weights.

eij , the effect of the bone j on the solution Wi, is calculated as the displacement caused by setting the corresponding weight wij to
0. Specifically, the contribution of the bone transformation j to the approximation of vertex i is computed as follows:

eij = ‖wij(Rt,jvi + Tt,j)‖2 (14)

To solve the linear least squares problem with non-negativity and affinity constraints, the SSDR method extends and accelerates the
Lawson and Hanson’s active set method (ASM) with bound constraints [Schaefer and Yuksel 2007] (details of the modified fast
ASM method can be found in Section 1.3.2). In contrast with several solutions for calculating the skinning weights, the fast ASM
solver in the SSDR method [Le and Deng 2012] does not treat the affinity constraint as soft constraint as in [James and Twigg 2005],
and does not take exponential computational time with respect to the number of bones as in [Kavan et al. 2010].

1.5.2 Bone Transformations Update

This update step solves the optimal bone rotations {Rt,j} and the bone translations {Tt,j} over the set of example poses by fixing
the bone-vertex influence map W and minimizing the objective function in Eq. (2a). Since the bone transformations for every pose
are independent, the minimization for each pose can be solved individually. For a pose t, the problem becomes finding the set of
bone transformations to associate {vi} to the vertices {v′t,i} through minimization of the following objective function:

Et = min
Rt,j |Tt,j ,j=1···m

n∑
i=1

∥∥∥∥∥v′t,i −
m∑
j=1

wij(Rt,jvi + Tt,j)

∥∥∥∥∥
2

(15)

The above Eq. (15) can be solved by the Levenberg-Marquardt (LM) algorithm [Marquardt 1963]. However, the LM algorithm is
inefficient since it requires many iterations as well as an initial guess that is sufficiently close to the optimal solution. Extending the
closed-form solution to Absolute Orientation problem [Horn 1987; Kabsch 1978] to multiple bone transformations by adding the
bone weights for each vertex [Müller et al. 2005; Zhu and Gortler 2007; Schaefer and Yuksel 2007] cannot provide the exact solution
to the original problem in Eq. (15), as illustrated in the left side of Fig. 1.

To guarantee the non-increasing of the global objective function, Eq. (2a), the SSDR method updates the bone transformations one
by one instead of updating all of them at once. For an example pose t, updating the transformation of bone ĵ while keeping the
remaining m− 1 bones fixed, can be solved by minimizing the following equation:

Etĵ =

n∑
i=1

∥∥∥∥∥∥v′t,i −
m∑

j=1,j 6=ĵ

wij(Rt,jvi + Tt,j)− wiĵ(Rt,ĵvi + Tt,ĵ)

∥∥∥∥∥∥
2

Let qti be the deformation residual of vertex i in example pose t caused by the remaining m− 1 bones,

qti = v′t,i −
m∑

j=1,j 6=ĵ

wij(Rt,jvi + Tt,j) (16)

The problem of finding the optimal transformation then becomes:

8 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Figure 1: Comparison of the Weighted Absolute Orientation solution [Horn 1987; Kabsch 1978] on the left and the iterative bone
transformations update [Le and Deng 2012] on the right. The blue dots indicate vertices in the example pose. The red plus signs
(+) indicate the target positions for the red bone transformation fitting. While the Weighted Absolute Orientation only provides an
approximate solution due to the deformation of the target positions in the example pose, the iterative method on the right converges
to the true optimum solution by calculating the target positions as the residual of the deformation caused by the remaining bones (the
green bone). Image courtesy of [Le and Deng 2012]. Copyright ©ACM 2012.

{Rt,ĵ ,Tt,ĵ}
∗ = arg min

R
t,ĵ
,T

t,ĵ

n∑
i=1

∥∥qti − wiĵ(Rt,ĵvi + Tt,ĵ)
∥∥2

(17)

Subject to: Rt,ĵ
TRt,ĵ = I, detRt,ĵ = 1

The problem, Eq. (17), is similar to the Weighted Absolute Orientation problem except the difference in the scope of the weights
term, i.e. the weights only affect vi but not qti . Similar to the work of [Horn 1987; Kabsch 1978], the SSDR method first removes
the translation Tt,ĵ and then solve for the optimum rotation. This is done by translating all the vertices to bring the center of rotation
(CoR) to the origin for each set of vertices as computed in Eq. (18). Note that this CoR is different from the CoR computed in [Horn
1987; Kabsch 1978], since the latter is simply the centroid of the two sets of vertices.

pi = vi − p∗ , qti = qti − wiĵq
t
∗ (18a)

Where: p∗ =

∑n
i=1 w

2
iĵ
vi∑n

i=1 w
2
iĵ

, qt∗ =

∑n
i=1 wiĵq

t
i∑n

i=1 w
2
iĵ

(18b)

The above translation removes Tt,ĵ from the optimization problem and leaves only the rotation Rt,ĵ to be minimized. Similar to [Kab-
sch 1978], the optimal rotation can be found by Singular Value Decomposition (SVD). First, two matrices P = [w1ĵp1 . . . wnĵpn]

and Q = [qt1 . . .q
t
n] (P,Q ∈ R3×n) are constructed. Then, SVD is performed on PQT as follows:

PQT =

n∑
i=1

wiĵpiq
t
i

T
= µΣϑT (19)

Finally, the optimal rotation and translation can be obtained as follows:

Rt,ĵ = ϑµT , Tt,ĵ = qt∗ −Rt,ĵp∗ (20)

The above bone transformation update process is described in Algorithm 4. The detailed proof for the optimal CoR in Eq. (18) and
the optimal transformation in Eq. (20) can be found in the Appendices of the SSDR method [Le and Deng 2012].

Re-Initialization of Insignificant Bone Transformations

At the bone-vertex weights update step, some proxy bones maybe do not have major influence on any vertices (called “insignificant
bones"). In such a case, their bone transformations cannot be accurately estimated. This is similar to the case of having less

9 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

than 3 points in the Absolute Orientation problem, where the rotation cannot be uniquely determined. In addition, having those
insignificant bones does not have major impact on the reconstruction error; thus, it is unnecessary to keep them. For this reason, its
bone transformation needs to be randomly re-initialized if a bone is determined as an insignificant bone. The bone re-initialization
can also prevent the iteration process to get stuck at a local minimum.

Specifically, in the SSDR method [Le and Deng 2012] the ĵ-th bone is identified as an insignificant bone if
∑n
i=1 w

2
iĵ
< ε. The

threshold ε is empirically set to 3 since this is the minimum number of vertices required in the Absolute Orientation problem. If
the j-th bone needs to be re-initialized, this bone is assigned to the vertex ι with the largest reconstruction error. Then, based
on 20 nearest vertices of ι in the rest pose, denoted as N(ι), the bone transformations {Rt,j |Tt,j} can be reinitialized by the
Kabsch algorihtm [Kabsch 1978]. Note that re-initialization does not guarantee the strict decreasing of the objective function. As
such, it could create a loop. To avoid such a potential loop, the SSDR method also allows the user to set the maximum number of
re-initializations.

Algorithm 4 Update bone transformations B

Require: V = {v′t,i}, P = {vi}, W = {wij}
Ensure: B = {Rt,j |Tt,j} subject to Eq. (3)

1: for t = 1→ S do
2: for ĵ = 1→ m do
3: if

∑n
i=1 w

2
iĵ
≥ ε then

4: Calculate qi, ∀i by Eq. (16)
5: Compute v∗, q∗, vi and qi ∀i by Eq. (18)
6: Perform SVD by Eq. (19)
7: Compute rotation Rt,ĵ by Eq. (20)
8: else
9: Re-initialize insignificant bone transformations

10: end if
11: end for
12: end for

1.6 Comparisons and Discussion of Different Skinning Decomposition Methods

To compare and evaluate different skinning decomposition methods, a set of publicly available triangle mesh datasets are used,
including 12 datasets from the “Deformation Transfer" [Sumner and Popović 2004], 2 datasets from the “Geometry Videos" [Briceño
et al. 2003], 1 dataset (chickenCrossing) from the “Skinning Mesh Animations" [James and Twigg 2005], and 1 dataset (pjump)
from the “Wavelet Compression" [Guskov and Khodakovsky 2004]. To quantitatively evaluate different methods, the error metric
proposed in [Kavan et al. 2010] is chosen. Specifically, all the datasets are resized so that the rest poses are tightly enclosed by a unit
sphere. Then, the error metric is calculated from the value E of the objective function in Eq. (2a) as follows:

ERMS = 1000

√
E

3nS

The SMA method, the LSSP method, and the SSDR method were chosen for comparison, and all the three methods impose the
orthogonal (rigid bone) constraint (Eq. (3)) on the bone rotation matrices, convex constraints and sparseness constraints on the
bone-vertex weight map. To ensure a fair comparison, all the three methods ran on a single thread, without GPU-based acceleration.
Note that [Kavan et al. 2010] was not included in this comparison because it cannot handle rigid bones.

Fig. 2 shows the comparison results on three models generated by SSDR, SMA, and LSSP. Due to the high deformability of the
models, SMA fails to associate vertices into rigid bones and hefty distortion can be observed on the reconstructed poses, especially on
the camel-collapse11 model. Although LSSP can estimate the global deformation well, certain details are not correctly reconstructed,
e.g., on the horse-collapse10 model.

Table 1 quantitatively shows that the SSDR method clearly outperforms SMA and LSSP. Especially on the elastic models (i.e.,
camel-collapse11, face-poses, horse-collapse3, and pcow24), the SSDR method generates significantly smaller errors than SMA. The
reason is that SMA computes the bone transformations by first clustering the triangle rotation sequences into rigid transformation
groups. Thus, it only works well if the mesh can be divided into nearly-rigid parts. The SSDR method also outperforms LSSP due
to the following two limitations of LSSP: (1) LSSP employs the soft constraint for sparseness; and (2) LSSP does not consider
the affinity constraint during the optimization, and the affinity constraint is only enforced through post-normalization. Also, even
the LSSP method supports the sparseness of the bone-vertex weight map, it does not guarantee the maximum number of non-zero
weights per vertex, which could be an issue for the implementation of hardware-accelerated skinning. Among the three approaches
(SSDR, SMA, and LSSP), LSSP has the lowest performance due to its MATLAB implementation and the complexity of its clustering
and optimization algorithm. In general, SSDR performs slightly slower than SMA. This is one limitation of the SSDR method.

10 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Figure 2: Comparisons of the skinning decomposition results among the SSDR [Le and Deng 2012], SMA [James and Twigg 2005],
and LSSP [Hasler et al. 2010]. LSSP is unable to run on the camel-collapse due to the large size of this dataset and SMA is unable to
configure with 10 bones for the horse-collapse dataset. The example poses (ground-truth) are rendered in blue. Significant distortion
areas are indicated in red circles. Image courtesy of [Le and Deng 2012]. Copyright ©ACM 2012.

2 Example-based Skeleton Extraction

While LBS with unorganized proxy bones is convenient for efficient computing and compression, it poses some disadvantages on
animation editing, compared to hierarchical bones (a.k.a. skeletal structure). Similar to the above skinning decomposition methods,
example-based skeleton extraction methods aim to minimize the example pose reconstruction error (Eq. (2)) while handing one
additional rotational constraint at the joints of the skeleton. These joint constraints connect the bones so that the joint becomes the
center of rotation of two connected bones. Existing example-based skeleton extraction methods can be divided into two categories:
single-pass method [Schaefer and Yuksel 2007; de Aguiar et al. 2008a; Hasler et al. 2010], and multi-pass method [Le and Deng
2014].

2.1 Single-pass Method

Due to the difficulty of adding the joint constraints, early skeleton extraction approaches [Schaefer and Yuksel 2007; de Aguiar et al.
2008a; Hasler et al. 2010] do not optimize the reconstruction error (Eq. (2)) explicitly. Instead, they perform a single pass consisting
of three sequential steps:

• Initialization. First, skinning weights and unorganized bone transformations (proxy bones) are initialized. At this step, a
clustering approach can be used to estimate rigid bone transformations [Schaefer and Yuksel 2007; de Aguiar et al. 2008a],
and then, constrained least squares solvers can be used to compute skinning weights. An alternative yet more accurate solution
is to perform a skinning decomposition [Hasler et al. 2010], which results in both skinning weights and bone transformations.

• Skeleton reconstruction. At this step, unorganized bones are linked together by constructing a tree-like structure, where each

11 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

edge of the tree corresponds to a bone and each node of the tree corresponds to the joint between two bones. This step can
be formulated as the problem of finding a minimum spanning tree in a weighted graph, where each node represents one
unorganized bone and the weight of each edge represents the cost of connecting two bones via a joint.

• Joint positions calculation. By convention, positions of the joints are computed in the rest pose. This step is formulated as
finding the least squares deviations of the joint locations after applying bone transformations.

2.2 Initialization

The goal of this step is very similar to the goal of the aforementioned skinning decomposition problem, i.e. generating skinning
weights and bone transformations from example poses. For this reason, techniques in section 1 can be employed. In addition, other
possible strategies are also described below.

Segmentation/Spectral clustering. This strategy [de Aguiar et al. 2008a] includes two steps. At the segmentation step, seed vertices are
selected as an evenly distributed subset of n vertices of the model (around 0.3% to 1.0% of n). Then, curvature-based segmentation
[Yamauchi et al. 2005] is used to decompose the rest pose into surface patches where each patch contains one seed vertex. At
the second step, Spectral clustering [Ng et al. 2001] is employed to further divide seed vertices into nearly-rigid components. In
particular, the affinity matrix that encodes the distance between seed vertices is computed by the mutual Euclidean distance of seed
vertices in all example poses. On one hand, the spectral clustering algorithm offers a robust initialization without manually specifying
the number of clusters (or number of bones). On the other hand, it has higher computing time and memory complexities than the
K-means clustering algorithm; thus, seed vertices are used to reduce the complexities.

Edge collapsing. Schaefer and Yuksel [2007] employ a bottom-up hierarchical clustering strategy. First, each mesh triangle is
initialized as one cluster; clusters with adjacency edges are continuously merged together until the desired number of clusters is
reached. The cluster merging is prioritized by the rigid error function that measures the per-cluster error if only rigid transformations
are used to fit the cluster in the rest pose for all example poses. Compared to other non-hierarchical clustering strategies (e.g.,
K-means, mean shift, and spectral clustering), the edge collapsing strategy always generates clusters with connected triangles since
the merging step only combines clusters with adjacency edges. This feature makes it more robust since the vertices supported by the
same bone are typically in a connected region.

Skinning decomposition. After performing a spectral clustering to decompose the mesh into nearly-rigid parts, Hasler et al. [2010] run
10 iterations of block coordinate descent skinning decomposition to further refine bone transformations and skinning weights. The
pipeline of these iterations are similar to [Le and Deng 2012], excepts for particular solvers used in each iteration. Specifically, Hasler
et al. use L1-norm minimization to handle the weight sparseness constraints and use the Levenberg–Marquardt algorithm [Marquardt
1963] to handle the orthogonal bone transformations.

2.2.1 Skeleton Reconstruction

The skeletal topology is constructed based on both mesh connectivity and bone transformations. A weighted graph G with m nodes
(corresponding to m bones) is constructed. The weight g(j, k) between bone j and bone k is computed by Eq. (21), which puts a
strong preference for having the joint (j, k) if the joint location fitting error (numerator) is small and the blending of two bones
(denominator) is large. The joint fitting error is computed as the sum of squared difference of the center of rotation of two bones,
ojk, after the two transformations of bone j and bone k. Here, the center of rotation ojk between two bones j and k is defined at the
rest pose, and its position is computed by [Anguelov et al. 2004] as described in follow-up section 2.2.2. Since ojk is the point such
that its locations after both bone transformations are most similar in all example poses; thus, the joint fitting error (the numerator
in Eq. (21)) measures the quality of having the joint between bone j and bone k. The blending of two bones (the denominator in
Eq. (21)) gives another measure on the relative position of the two bones, in which a larger blending means the two bones are more
likely to share the common joint; and vice versa. As the result, g(j, k) is large if bone j and bone k have a high probability of sharing
the common joint.

g(j, k) =

∑S
t=1

∥∥∥∥([Rt,j |Tt,j]− [Rt,k|Tt,k]

)[
ojk
1

]∥∥∥∥2

2∑n
i=1 wijwik

(21)

Finally, the skeleton S is determined as the Minimum Spanning Tree (MST) of G [Kruskal 1956]. In this writing, (j, k) ∈ S is used
to denote (j, k) is an edge of the tree S, that is, bone j and bone k share a common joint. This common joint is also denoted as
(j, k), and the joint position (at the rest pose) is denoted as ojk, which is also the center of rotation of two bones j and k. In practice,
the root of the skeleton is often manually specified. One simple way is to set the root as the joint that is the closest to the centroid of
the rest pose.

2.2.2 Joint Constraints and Joint Positions Solver

Joint constraints. The constraints proposed by Anguelov et al. [2004] is used to make bone transformations rotate around common
joints. Assuming the two bones j and k share the same joint (j, k). Let ojk ∈ R3 be the position of joint (j, k) (at the rest

12 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

pose), which is also the center of rotation of two bones j and k. Intuitively, ojk is the point such that its locations after both bone
transformations are most similar in all frames. Thus, the joint fitting error in Eq. (22) will be close to zero.

S∑
t=1

∥∥∥∥([Rt,j |Tt,j]− [Rt,k|Tt,k]

)[
ojk
1

]∥∥∥∥2

2

→
[
0
1

]
(22)

Joint positions solver. Given the two bone transformations sequences [Rt,j |Tt,j] and [Rt,k|Tt,k], the common joint of bone j
and bone k can be found by minimizing the joint fitting error in Eq. (22). However, many joints of articulated creatures are hinge
joints, which only have one degree of freedom (rotation). For these type of joints, any point in the rotation axis will be the minimum
solution to Eq. (22). There are two solutions to this problem.

Anguelov et al. [2004] add a soft constraint to minimize the distance between joint position to the centroid of two bones as follows:

min
ojk

S∑
t=1

∥∥∥∥([Rt,j |Tt,j]− [Rt,k|Tt,k]

)[
ojk
1

]∥∥∥∥2

2

+ µ ‖gj + gk − 2ojk‖22 , (23)

where gj and gk denote the centroids of the vertices of the bones, and a user-specified parameter µ (typically set to a small number,
e.g., 0.01) is used to control the trade-off between the joint fitting error and the joint position error.

The second approach [Schaefer and Yuksel 2007] uses a pseudo-inverse solver to solve the joint position in a subspace. It gives a
slightly smaller approximation error than [Anguelov et al. 2004]. However, it tends to find the wrong subspace if the estimated bone
rotations are non-robust.

2.3 Multi-pass Strategy

min
S,ojk,wij ,[Rt,j |Tt,j]

E =ED + ωES + λEJ (24a)

Where: ED =
1

nS

n∑
i=1

S∑
t=1

∥∥∥∥∥
m∑
j=1

wij [Rt,j |Tt,j]

[
vi
1

]
− v′t,i

∥∥∥∥∥
2

2

(24b)

ES =

m∑
j=1

wj
TLwj (24c)

EJ =
1

S

∑
(j,k)∈S

S∑
t=1

∥∥∥∥([Rt,j |Tt,j]− [Rt,k|Tt,k]

)[
ojk
1

]∥∥∥∥2

2

(24d)

Subject to: wij ≥ 0,
m∑
j=1

wij = 1, ‖wi‖0 ≤ K(= 4), ∀i, j (24e)

Rt,j
TRt,j = I, detRt,j = 1, ∀j, t (24f)

The multi-pass approach proposed by Le and Deng [2014] minimizes the objective function in Eq. (24a) to find the optimized LBS
model with skeletal constraints. The objective function E includes the following 3 terms:

• Data fitting term ED (Eq. (24b)) minimizes the mesh reconstruction error. This term is the squared sum of the reconstruction
errors for all the vertices for all the example poses.

• Weight regularization term ES (Eq. (24c)) favors the smoothness of skinning weights and drives the removal of redundant
bones (section 2.3.2). This term is derived from the fairness and smoothness conditions on the manifold, which is similar to
[Kim et al. 2010]. wj ∈ Rn is the column vector of n skinning weights of bone j, and L ∈ Rn×n is a discrete Laplacian
matrix of the input mesh, where Lik represents the similarity between the weights of two neighboring vertices i and k.

• Joint constraint term EJ (Eq. (24d)) keeps any two connected bone transformations ∈ S rotate around their common joint.
This soft constraint is derived from [Anguelov et al. 2004; Schaefer and Yuksel 2007]. If two bones j and k share the common
joint (j, k), this constraint favors the rest-pose position of the joint, ojk, going to the same position after bone j transformation
and bone k transformation (also refer to the explanation of Eq. (21) in section 2.2.1).

The minimization of E is also subject to the set of hard constraints. It includes convex constraints (non-negativity and affinity)
and sparseness constraints (no more than 4 non-zero weights per vertex) on the skinning weights {wij} (Eq. (24e)), and includes
orthogonal constraints (Eq. (24f)) on the bone transformations {Rt,j} (all the bone transformations need to be rigid).

13 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

2.3.1 Adding Joint Constraints

To enforce the joint constraints while updating the rigid bone transformations, the solution to the Absolute Orientation problem with
blending to relate two sets of points [Le and Deng 2012], is employed, while the joints are treated as additional points with a large
weight (λ). When the parameter λ is increased, bones are constrained to rotate more strictly around the joints as illustrated in Fig. 3.

Figure 3: (Left) Without the joint constraints, the bone transformations (bones) generated by [Le and Deng 2012] do not always
rotate around the joints. (Right) With the soft joint constraints, bones rotate more strictly around the joints [Le and Deng 2014].
Since the bone transformations are alternatively updated with the joint locations, the resulting rigging model can converge to a local
optimum with a good approximation of the input. Image courtesy of [Le and Deng 2014]. Copyright ©ACM 2014.

At this bone transformations update step, the objective function (Eq. (24a)) needs to be minimized with respect to the bone
transformations [Rt,j |Tt,j]. To constrain the rotation matrix Rt,j to be orthogonal, Le and Deng [2014] employ an optimization
strategy for the rigid transformations with blending, where bones are updated one by one while keeping the rest of the bones fixed,
described below.

The transformation of bone ĵ at pose t is updated by minimizing the following objective function, Eq. (25a), which contains two
parts. The first part corresponds to the data fitting term (Eq. (24b)) whose optimal solution brings the rest pose vi to the residual qti
(Eq. (25b)). The second part corresponds to the joint constraints in Eq. (24d), which enforces [Rt,ĵ |Tt,ĵ] to bring every joint oĵk of
bone ĵ to its expected position Ψt

k(oĵk) after bone k transformation. Note that the weight smoothness term ES in Eq. (24c) can be
dropped since [Rt,j |Tt,j] is not involved in ES .

minEtĵ =
1

n

n∑
i=1

∥∥∥∥wiĵ [Rt,ĵ |Tt,ĵ]

[
vi
1

]
− qti

∥∥∥∥2

2

+

λ
∑

(ĵ,k)∈S

∥∥∥∥[Rt,ĵ |Tt,ĵ]

[
oĵk
1

]
−Ψt

k(oĵk)

∥∥∥∥2

2

(25a)

Where: qti = v′t,i −
m∑

j=1,j 6=ĵ

wij [Rt,j |Tt,j]

[
vi
1

]
(25b)

Ψt
k(oĵk) = [Rt,k|Tt,k]

[
oĵk
1

]
(25c)

The optimal solution to minimize the objective function Eq. (25a) is the combination of the solution of rigid transformations with
blending and the solution to the Weighted Absolute Orientation problem [Kabsch 1978]. The center of rotation p∗ for the rest
pose (Eq. (26a)) and the center of rotation qt∗ for pose t (Eq. (26b)) need to be computed first. Note that, in Eqs. (26a) and (26b),∣∣∣(ĵ, k) ∈ S

∣∣∣ denotes the number of the edges that are connected with ĵ in S.

p∗ =

1
n

∑n
i=1 w

2
iĵ
vi + λ

∑
(ĵ,k)∈S oĵk

1
n

∑n
i=1 w

2
iĵ

+ λ
∣∣∣(ĵ, k) ∈ S

∣∣∣ (26a)

qt∗ =

1
n

∑n
i=1 wiĵq

t
i + λ

∑
(ĵ,k)∈S Ψt

k(oĵk)

1
n

∑n
i=1 w

2
iĵ

+ λ
∣∣∣(ĵ, k) ∈ S

∣∣∣ (26b)

Then, the center of rotation is subtracted from each vertex and each joint as follows:

14 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

pi = vi − p∗; oĵk = oĵk − p∗ (27a)

qti = qti − wiĵq
t
∗; Ψ

t
k(oĵk) = Ψt

k(oĵk)− qt∗ (27b)

The points after subtraction are concatenated into matrices P,Q ∈ R3×(n+|(ĵ,k)∈S|) as follows:

P =
[w1ĵ

n
p1 . . .

wnĵ
n

pn

∣∣∣ ∀(ĵ,k)∈Sλoĵk

]
(28a)

Q =

[
1

n
qt1 . . .

1

n
qtn

∣∣∣∣ ∀(ĵ,k)∈SλΨ
t
k(oĵk)

]
(28b)

Finally, the optimal transformation of bone ĵ at pose t, Eq. (29a), is computed by performing SVD on PQT.

Rt,ĵ = ϑµT; Tt,ĵ = qt∗ −Rt,ĵp∗ (29a)

Where: µςϑT = PQT (29b)

2.3.2 Skeleton Pruning

Figure 4: The redundant bones in the left panel are pruned to achieve the neat skeleton in the right panel by [Le and Deng 2014]. As
illustrated in the two yellow boxes, the redundant bone j is identified by utilizing the weight regularization term to force its weights
degenerate. Image courtesy of [Le and Deng 2014]. Copyright ©ACM 2014.

Since the initialization step (section 2.2) considers neither transformation blending nor the skeleton structure, it might generate some
redundant bones. Typically, the redundant bones are located in highly deformable regions, e.g., around the joints, as they cause large
approximation errors at the cluster initialization step. Later, after the LBS resolves the highly deformable regions, the redundant
bones are no longer needed and thus should be removed. Unfortunately, since the redundant bones do not violate any conditions in
the LBS formulation, accurately identifying them is difficult. For this reason, the solution optimized by a general data fitting with
alternative skinning weights update and bone transformations update [Le and Deng 2012], would still retain the redundant bones,
because keeping the redundant bones indeed helps to further reduce the LBS deformation error.

Instead of conducting a brute-force search for the redundant bones, Le and Deng [2014] utilize the weight regularization term to
force their weights degenerate. An example of this strategy is illustrated in Fig. 4. As illustrated in the yellow box in the left panel,
the bone j (red) is initialized at a potential joint between the bone h (blue) and the bone k (green). Although the blending between h
and k can closely approximate the deformation, having the bone j is still a valid solution for the best approximation. By adding the
weight regularization term, the minimized objective function (Eq. (24a)) makes the weights of j become very close to zero, in order
to improve the smoothness of the skinning weights. As the result, the bone j becomes degenerate, and it can be removed. Specifically,
the redundant bone j can be removed if the sum of its squared weights is smaller than 1% of the largest sum of the squared weights
among all the bones. Mathematically, the bone j is removed if its weights satisfy the condition described in the following Eq. (30).

15 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Remove bone j if
n∑
i=1

wij
2 < 10−2M (30)

where: M = max
k

{
n∑
i=1

wik
2

}

2.4 Comparisons and Discussion of Different Skeleton Extraction Methods

9 test datasets (Table 2) are obtained from various publicly available sources: the cat-poses, horse-poses, lion-poses, and horse-
gallop from [Sumner and Popović 2004]; the hand from [Utah 2013]; the dance and cow from [Briceño et al. 2003]; the scape was
obtained from [Anguelov et al. 2005]; and the samba was obtained from [Vlasic et al. 2008].

Since the three main steps of a single-pass method are well-separated, its pipeline is efficient and simple to implement. However,
the single-pass methods [Schaefer and Yuksel 2007; de Aguiar et al. 2008a; Hasler et al. 2010] have the following shortcomings:
First, bones cannot be identified perfectly since the initialization step does not model connection between bones (skeletal structure).
As such, this step would either require non-trivial model-specific parameter tuning or result in an un-robust skeleton with many
redundant bones. Second, each step in this pipeline is performed on the output from the previous step; thus, each step does not model
any constraints on the previous or next steps. For example, the clustering step does not model transformation blending. Likewise,
after the joint locations are determined, joint constraints would change the bone transformations generated at the previous step. As an
end result, errors could be significantly accumulated (e.g., from the root joint to leaf joints). Examples in Fig. 5 show two common
limitations of these single-pass methods.

Figure 5: Examples that show two common limitations of the single-pass skeleton extraction methods: (i) an over-estimated
bone initialization may generate inaccurate and redundant bones (indicated by red arrows); (ii) an inaccurate estimation of bone
transformations (indicated by red arrows with ellipse) causes noticeable deformation errors when the bones are connected by joints
(see the change of the legs). The examples in this figure are generated using [Hasler et al. 2010]. Image courtesy of [Le and Deng
2014]. Copyright ©ACM 2014.

Fig. 6 shows the skeletons extracted from 3 test datasets by the multi-pass approach [Le and Deng 2014] as well as their corresponding
cluster initialization results. Despite generating over-estimated clusters at the initialization step, the multi-pass approach successfully
pruned redundant bones, especially for the dance and hand models. Fig. 7 demonstrates the robustness and effectiveness of its
skeleton pruning for handling different numbers of clusters from the initialization step. This approach can produce similar final
skeletons with consistent structure on the trunk and legs, by pruning most of the redundant bones. Note that minor differences only
appear on certain highly deformable regions such as the tail and feet.

Fig. 8 shows the comparisons among the multi-pass approach [Le and Deng 2014] and three state of the art single-pass approaches
[Schaefer and Yuksel 2007; de Aguiar et al. 2008a; Hasler et al. 2010]. For a fair comparison, the same number of bones are used in
the four methods.

Table 2 shows quantitative comparisons among all the four methods (method I - [Le and Deng 2014], method II - [Schaefer and
Yuksel 2007], method III - [de Aguiar et al. 2008a], and method IV - [Hasler et al. 2010]). In term of the approximation power
(measured by lower RMSE), [Le and Deng 2014] soundly outperforms the other three methods due to its iterative rigging. However,
it is slower than both the method II and the method III, since it needs many iterations. Fig. 9 shows examples of visual distortion on
the reconstructed hand poses with respect to different RMSE values.

3 Skinning Weight Reduction and Compression

In many linear surface deformation methods (including LBS and cage-based deformation), the deformed position of a surface vertex
can be expressed as a weighted summation of control points or bones. Specifically, in cage-based deformation, a vertex v′i on the

16 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Figure 6: The skeletons extracted from 3 datasets by the multi-pass skeleton extraction approach proposed by Le and Deng [2014]
(from left to right): cat-poses, dance, and hand. The clustering results obtained at the initialization step are also illustrated via a
color-coded scheme. Using the same set of parameters, this approach can robustly determine the optimal number of bones in the
skeletons thanks to the skeleton pruning. Image courtesy of [Le and Deng 2014]. Copyright ©ACM 2014.

Figure 7: The extracted horse-gallop skeletons by the multi-pass skeleton extraction approach proposed by Le and Deng [2014]
with different cluster initializations. Despite very different numbers of initialized clusters, this approach can output similar final
skeletons with consistent structure on the trunk and legs; minor differences on the tail and feet are due to the high deformations on
these regions. Image courtesy of [Le and Deng 2014]. Copyright ©ACM 2014.

target surface is computed as a weighted combination of the vertices cj of the control mesh (i.e., cage), as described in Eq. (31).

v′i =
∑
j

wijcj , (31)

where wij denotes the influence (weight) of the j-th control point on vertex i on the surface. Similarly, in LBS case, a similar

17 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Method I - [Le and Deng 2014]

Figure 8: Comparisons between the multi-pass approach [Le and Deng 2014] and three state of the art single-pass approaches
[Schaefer and Yuksel 2007; de Aguiar et al. 2008a; Hasler et al. 2010]. The five test datasets shown in this figure are (in the
clockwise direction starting from the top-left corner): cat-poses, lion-poses, scape, horse-gallop, and hand. The issues in the results
are indicated by red arrows. Image courtesy of [Le and Deng 2014]. Copyright ©ACM 2014.

Method I
[Le and Deng 2014]

Figure 9: Examples of visual distortion on the reconstructed hand poses with respect to different RMSE values (pay attention to the
red circled areas). Fig. 8 shows the corresponding skeletons. Image courtesy of [Le and Deng 2014]. Copyright ©ACM 2014.

weighted combination formula exists (Eq. (32)).

v′i =

m∑
j=1

wij [Rj |Tj]vi, (32)

where [Rj |Tj] denotes the transformation of the j-th bone, and vi denotes the position of vertex i at the rest pose.

In both Eq. (31) and Eq. (32), the non-negativity and affinity constraints are often imposed onto {wij}, that is, wij ≥ 0 and∑m
j=1 wij = 1 (for any i). One important property of these deformation methods is locality: the deformed position of a vertex is

often influenced by a small number of bones (or control points) that are in a local region. Furthermore, the weight wij typically
decreases with respect to the Euclidean distance [Ju et al. 2005] and geodesic distance [Joshi et al. 2007] between the vertex and
the bone (or control point). Therefore, many weights {wij} for a particular vertex v′i are often very small (or even close to zero),
and only a few of them are significant to determine the final position of v′i [Landreneau and Schaefer 2010]. As such, effectively
exploiting the weight locality would not only make the reduction of weights for each vertex possible, but also make the efficient
GPU implementation of the deformation and skinning algorithms feasible, since modern GPU structure efficiently supports a fixed
number of operations per vertex at architectural level.

18 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

In recent years, a number of skinning weight reduction methods have been proposed, including:

• k-largest weight reduction that straightforwardly chooses the largest k weights from the original weight set;

• smooth weight reduction that optimizes the Laplacian of the reduced weights to match that of the original weight set
[Landreneau and Schaefer 2010];

• geometric weight reduction that selects an optimal set of bones (or control points), having the smallest square errors when
used to individually predict deformed position, and then compute the corresponding bone-vertex weights [James and Twigg
2005]; and

• Poisson-based weight reduction that optimizes a Poisson equation defined over the surface [Landreneau and Schaefer 2010].

The above weight reduction methods are designed to optimally retain the deformation quality while reducing the number of weights
for each vertex to a small, fixed number. Often, this reduced number is set to 4 due to practical consideration of the efficient GPU
implementation. However, exceptional vertices that are naturally associated with more than k bones or control points could exist on
some 3D models (examples are shown in Fig. 10). As a result, the above skinning weight reduction methods could lead to noticeable
visual artifacts on certain 3D models. The recent proposed two-layer sparse compression method [Le and Deng 2013] is designed to
eliminate such noticeable visual artifacts as well as increase the runtime efficiency of dense-weight skinning models.

In follow-up course note, we first briefly describe the main methodology of the k-largest weight reduction, smooth weight reduction,
geometric weight reduction, and Poisson-based weight reduction. Then, we describe the methodology of the two-layer sparse
compression method in details. Lastly, we describe some comparison results among all the above skinning weight reduction and
compression approaches.

Figure 10: Two examples of 3D models with exceptional vertices (red regions) that are naturally associated with more than k bones
or control points. Image courtesy of [Le and Deng 2013]. Copyright ©ACM 2013.

3.1 K-largest Weight Reduction

The basic idea of the K-largest weight reduction method is to retain k largest weights from the original weight set for each vertex and
then renormalize the retained weights (to satisfy the affinity constraint). Its underlying rationale is that, due to the observation that
the blending weight is in general proportional to the distance between the vertex and the control point or bone, a smaller weight in
the original weight set generally implies a larger distance between the vertex and the control point or bone, and thus forcing them to
zero would be justified to certain extent.

Mathematically, this weight reduction method can be described as follows:

v′i =

k∑
j=1

ŵij [Rj |Tj]vi, (for linear blend skinning) (33)

v′i =

k∑
j=1

ŵijcj , (for cage-based deformation) (34)

assuming wij(∀j = 1 · · · k) ≥ wil (∀l > k) is valid, and ŵij is the renormalized version of wij . Despite its simplicity, however,
with this method, the influence sets of bones (or control points) for neighboring vertices could be different, which could cause visual
tears and normal discontinuity on 3D models at the end. One such example of cage-based deformation is shown in Fig. 11.

19 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Figure 11: (from left to right) The rest pose with control cage, original deformed surface, reduced to 8 per vertex using k-largest
weights, geometric reduction, smooth weight reduction, and Poisson-based weight reduction. Image courtesy of [Landreneau and
Schaefer 2010]. Copyright ©Eurographics Association 2010.

3.2 Smooth Weight Reduction

The smooth weight reduction method [Landreneau and Schaefer 2010] does not utilize multiple example poses (just need a single
pose), and it also assumes the influence set of k control points (or bones) for vertex i, denoted as Bi, is heuristically determined
based on the order of their original weight values, which is the same as the above k-largest weight method.

The essential idea of this method is to find a set of smooth weights that satisfy the weights are zero outside of the influence set
for a vertex, which can be achieved by optimizing the Laplacian of the reduced weights to match that of the original weight set
[Landreneau and Schaefer 2010]. Specifically, in the case of cage-based deformation (or any generalized barycentric coordinate
deformation), let ρ̄j(v) be the barycentric coordinate function of the j-th control point of a cage, the goal of this weigh reduction
method is to maximize the smoothness of this restricted influence function, ρj(v), whose value is 0 if j /∈ Bi, by minimizing the
following objective function:

∑
j

(O2ρj − O2ρ̄j), (35a)

Subject to:
∑
j

ρj(v) = 1, (35b)

∑
j

ρj(v)cj = v. (35c)

In the above equations, the O2 operator for polygonal meshes is a summation of cotan weights [Pinkall and Polthier 1993; Landreneau
and Schaefer 2010]. Thus, solving the above minimization problem can be converted to the solving of a sparse, linear system of
nk+4 equations (n is the total number of vertices on the mesh, and k is the number of retained weights for each vertex). If an
additional non-negativity constraint is imposed on ρj(v), then this problem can be solved using nonnegative least squares (NNLS)
solvers [Lawson and Hanson 1974]. The work of [Landreneau and Schaefer 2010] also proposed an efficient, iterative solver that
incrementally updates the weights of each vertex by assuming the weights of its one-ring neighbors are fixed.

This smooth weight reduction method can also be straightforwardly applied to the LBS model. In particular, Bi denotes the influence
set of k bones for vertex i, and the above Eq. (35c) also needs to be changed to the following form:

∑
j

ρj(v)[Rj |Tj]v = v′ (36)

Compared with the naive k-largest weight reduction method, the smooth weight reduction method can generate smoother results
(less visible artifacts on the surface), as shown in the two examples in Fig. 11 and Fig. 12. However, we still can see tears and visual
artifacts at certain regions on the 3D models, the main reason is that since only a single pose is utilized in this method, it does not
have any clue on plausible deformations of the 3D model that may be generated by users [Landreneau and Schaefer 2010].

3.3 Geometric Weight Reduction

In order to sample the plausible deformations of the given 3D model, a set of user-provided example poses typically needs to be
utilized. By employing a set of example poses, James and Twigg [2005] proposed a geometric weight reduction approach for LBS
model, and later it has been applied to cage-based deformation [Landreneau and Schaefer 2010]. Specifically, in the LBS case, the
crux of geometric weight reduction is to first determine an optimal set of influence bones for each vertex, and then compute the
corresponding bone-vertex weights.

20 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

(1) Identifying an optimal set of influence bones for each vertex. In this approach, instead of directly solving a complex discrete
model/variable section problem that does not have any yet known optimal polynomial solutions [Zou and Hastie 2005], it chooses
the best k bones for vertex i that have the smallest square errors when used to individually predict the deformed positions [James and
Twigg 2005]. Mathematically, let Bi be the set of bones that maximally influence vertex i, and further assume |Bi| ≤ k (no more
than k bone-vertex weights for each vertex), Bi can be obtained by solving the following minimization problem:

eij =

S∑
t=1

||v′t,i − [Rt,j |Tt,j]vi||22, j = 1 · · ·m (37)

where v′t,i denotes the deformed position of vertex i at the t-th example pose. To this end, based on the obtained {eij} (j = 1 · · ·m),
the smallest k bones are chosen and included to Bi.

(2) Computing bone-vertex weights for each vertex. After Bi is obtained, the corresponding bone-vertex weights {wij} (j = 1 · · · k)
for vertex i can be computed by a least squares approach. Mathematically, it can be formulated as the solving of the following
constrained system of S equations:

∑
j∈Bi

([Rt,j |Tt,j]vi)wij = v′t,i, t = 1 · · ·S (38)

The above system of equations (Eq. (38)) can be converted to its equivalent matrix form as follows:

A(i)w(i) = b(i) (39a)

Subject to:
∑
j

wij = 1 (39b)

To prevent the weight over-fitting issue, James and Twigg [2005] introduce another scaling parameter c (e.g., c = 1/||b(i)||2) into
the above Eq. (39), and also incorporate the affinity constraint (Eq. (39b)) through matrix/vector expansion as follows.

[
cA(i)

1 · · · 1

]
w(i) =

(
cb(i)

1

)
⇔ Ã(i)w(i) = b̃(i) (subject to: w(i) ≥ 0) (40)

The above Eq. (40) can be solved using various constrained least squares techniques, such as an efficient nonnegative least squares
(NNLS) iterative solver proposed by Lawson and Hanson [1974]. To the end, {wij |j ∈ Bi} needs to be normalized to satisfy the
affinity constraint (Eq. (39b)).

In general, the geometric weight reduction method can produce better visual quality than the K-largest weight method as well as the
smooth weight reduction method (for example, the silhouette can be better approximated); however, the geometric weight reduction
method still fails to guarantee the normal continuities, which would still lead to noticeable visual artifacts on the surface (refer to
cage-based deformation example in Fig. 11). Another linear blend skinning comparison example is shown in Fig. 12.

Figure 12: The Samba model comparisons among selected skinning weight reduction methods, including k-largest weight reduction,
smooth weight reduction [Landreneau and Schaefer 2010], geometric weight reduction [James and Twigg 2005], and Poisson weight
reduction [Landreneau and Schaefer 2010], and two-layer sparse compression of dense skinning weights [Le and Deng 2013].
Image courtesy of [Le and Deng 2013]. Copyright ©ACM 2013.

21 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

3.4 Poisson-based Weight Reduction

Directly ensuring the normal continuities of the weight-reduced deformations is often involved with the solving of a non-linear
optimization problem, which is quite costly. With the aid of a set of example poses, the core idea of the Poisson-based weight
reduction method [Landreneau and Schaefer 2010] is to minimize a Poisson equation defined over the surface [Yu et al. 2004].
Specifically, for cage-based deformation, let φ be an unknown function defined over the target surface, the Poisson equation is the
optimal solution to the following problem:

min
φ

∫
Ω

|Oφ− g|2dA, ⇔ min
φ

∫
Ω

|O2φ− O.g|2dA, (41)

where Ω denotes the surface, g is a guidance field defined over the surface Ω, and O2 is the Laplacian operator. Assuming g is also
provided as a divergence of a scalar field ψ over the surface, Eq. (41) can be rewritten to the following form:

min
φ

∫
Ω

|O2φ− O2ψ|2dA, ⇔ min
w

2∑
γ=0

S∑
t=1

n∑
i=1

(O2(
∑
j∈Bi

wijct,j [γ])− O2v′t,i[γ])2, (42)

where γ denotes a different component of the 3D position (x: γ = 0; y: γ = 1; z: γ = 2), and ct,j denotes the position of the j-th
control point of the t-th example.

For LBS case, the above minimization equation (Eq. (42)) need to be modified to the following form (often the non-negativity
constraint is also applied to wij for LBS model):

min
w

2∑
γ=0

S∑
t=1

n∑
i=1

(O2(
∑
j∈Bi

wij([Rt,j |Tt,j]vi)[γ])− O2v′t,i[γ])2. (43)

The above equations (Eq. (42) and Eq. (43)), as constrained sparse quadratic equations, can be solved using Lagrange multipliers
solver or the NNLS solver [Lawson and Hanson 1974] if the non-negativity constraint is enforced to {wij} [Landreneau and Schaefer
2010].

As shown in the comparison example in Fig. 11, in general the Poisson-based weight reduction method can produce smoother (and
less noticeable artifacts) than the other three weight reduction methods (i.e., k-largest weight reduction, smooth weight reduction, and
geometric weight reduction). Fig. 13 shows another comparison example among the four weight reduction methods. However, for
certain complex deformations (e.g, the Samba model in Fig. 12), we still can observe noticeable visual artifacts by the Poisson-based
weight reduction method, especially compared with the two-layer sparse compression method (elaborated below).

Figure 13: Weight reduction comparisons on the Pinocchio model. (from left to right) The original deformed surface, reduced to
5 per vertex using k-largest weights, geometric reduction, smooth weight reduction, and Poisson-based weight reduction. Image
courtesy of [Landreneau and Schaefer 2010]. Copyright ©Eurographics Association 2010.

3.5 Two-layer Sparse Compression for Skinning Weight Reduction

The above weight reduction methods can greatly speed up the skinning efficiency (in particular, on the GPU); however, the visual
quality of resulting skinning models is degraded noticeably, especially for 3D models with exceptional vertices. To balance the
trade-off between the degraded visual quality and skinning efficiency, Le and Deng [2013] developed a two-layer sparse compression
approach for dense-weight skinning models. It can be applied to both linear blend skinning and cage-based deformation. Its goal
is to speed up the skinning efficiency significantly, with insignificant loss of its visual quality. The relation among this approach
(“compressed"), the original skinning model (“dense LBS"), and the aforementioned skinning weight reduction approaches (“sparse
LBS") can be illustrated in Fig. 14.

22 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Figure 14: The two-layer sparse compressed skinning model (green elephant) can achieve the good balance between visual quality
and skinning efficiency. Image courtesy of [Le and Deng 2013]. Copyright ©ACM 2013.

This approach constructs an effective two-layer blend model to reduce the computation of linear blend skinning (LBS) with dense
weights. Specifically, its master bone blending layer blends the transformations of the original control bones (called master bones)
and caches the results as virtual bone transformations. Then, its virtual bone blending layer blends the virtual bone transformations
in a similar way to produce vertex transformations. At the virtual bone blending layer, each vertex transformation is blended by
no more than two virtual bones. Compared with various existing (aforementioned) weight reduction techniques, it can achieve
substantially smaller approximation errors than state of the art weight reduction techniques, given the same total number of bones.
Fig. 16 illustrates the skinning quality and efficiency comparisons among the original dense-weight LBS, sparse LBS, and the
two-layer sparse compression model.

Figure 15: A conventional blend skinning model (top left) with a dense weight matrix W (bottom left) is approximated as a two-layer
blending with virtual bones (top right). This is equivalent to factorizing W into a sparse dictionary D and a matrix of sparse
coefficients A (bottom right). Each column of D has at most c non-zero elements, while each column of A has at most 2 non-zero
elements. Image courtesy of [Le and Deng 2013]. Copyright ©ACM 2013.

3.5.1 Problem Formulation

Let W ∈ Rm×n be the weight matrix of an input skinning model with n vertices and m bones, as illustrated at the top left of Fig. 15,
and let wi denote the i-th column of W (or the original weights of the i-th vertex). The two-layer sparse compression approach
compresses the original skinning model using a two-layer blending scheme with virtual bones (the top right of Fig. 15). At the first
layer, a.k.a. master bone blending, it calculates and caches the transformations of q virtual bones by blending the transformations of
m original bones (called master bones). Note that typically q � n. At the second layer, a.k.a. virtual bone blending, it calculates the
position of each vertex by blending the transformations of the virtual bones and applying the resultant transformation to the vertex.

23 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

It also imposes a sparseness constraint on each blending layer to make the model friendly to parallel implementation on graphics
hardware. Specifically, at the master bone blending layer, it allows at most c blending operations for each virtual bone; at the virtual
bone blending layer, it allows at most 2 blending operations for each vertex (refer to Fig. 15).

Let dj ∈ Rm be the blending weights of the j-th virtual bone, we can represent all the master bone blending weights as a sparse
matrix D = [d1, . . . ,dq] ∈ Rm×q . Similarly, let ai ∈ Rq be the blending weights of the i-th vertex, it can represent all the virtual
bone blending weights as another sparse matrix A = [a1, . . . ,an] ∈ Rq×n, where each column ai has at most two non-zero
elements. With the above matrix representations, the blend skinning compression problem can be elegantly reformulated as a sparse
coding problem in which the original matrix W needs to be factorized into D (i.e., dictionary) and A (i.e., coefficients), as illustrated
at the bottom of Fig. 15. Each column dj is called an atom of the dictionary. This sparse coding problem can then be formulated as
minimizing the following quadratic error function:

Figure 16: The two-layer sparse compression model can compress Linear Blend Skinning (LBS) model with dense weights and
generate a fast and compact model without sacrificing the quality of skinning, compared with dense-weight LBS model. Image
courtesy of [Le and Deng 2013]. Copyright ©ACM 2013.

min
D,A

∆W
2 = min

D,A

1

mn
‖DA−W‖2F (44a)

Subject to: card(ai) ≤ 2,∀i (44b)
card(di) ≤ c, ∀i (44c)

In the above equations, card(x) denotes the cardinality (number) of non-zero elements in vector x. The constraint in Eq. (44b)
enforces that at most two virtual bones can influence any particular vertex. Since the number of vertices is typically large, minimizing
the number of blending operations (empirically choose it as two) at the virtual bone blending layer would be the most effective way
to reduce computational cost. As shown in Eq. (44c), in order to maintain the approximation power of this model, it also needs to
keep the sparseness of dictionary atoms (i.e., the sparseness of D) to be no less than that of the original weights. As suggested by Le
and Deng [2013], slightly increasing the sparseness of atoms could expand its approximation power. For this reason, c is empirically
chosen as maxi=1...n card(wi) + 1. Note that any tuning on c can be performed to further optimize performance with different
input data.

Compared with the aforementioned weight reduction methods (i.e., directly imposing a sparseness constraint on skinning weights),
this two-layer sparse blending model essentially expands the linear blending space from c-1 bone blending operations per vertex to
2c bone blending operations per vertex. Furthermore, virtual bones in this model can cache similar blending of master bones and
save significant computational cost. The virtual bones can also be adaptively distributed in accordance with deformation complexity,
e.g., the vertices on highly deformed regions could employ more virtual bones than those on other regions, as illustrated in Fig. 17.

3.5.2 Sparse Decomposition

Sparse decomposition (also called sparse approximation) is the estimation of a sparse vector that satisfies a linear system of equations,
given multi-dimensional observed data and a dictionary matrix. Sparse decomposition techniques have been widely used in many
applications including image processing, audio processing, biology, document analysis, and data compression and denoising. Here
sparsity implies many zeros in a vector or a matrix.

Let x ∈ Rn be a data point in a dataset called X, assume x can be approximated as follows:

x ≈ Da, (45)

24 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Figure 17: Some example poses of an animated mesh sequence (left) and its corresponding two-layer compressed blend skinning
model (right). Master bone transformations are illustrated in red, and virtual bone transformations are illustrated in blue. We place
each virtual bone at a vertex with the largest sparse coefficient. The two-layer sparse compression model distributes virtual bones
adaptively so that more virtual bones are employed for highly deformed regions (e.g., the legs or the tail). Image courtesy of [Le and
Deng 2013]. Copyright ©ACM 2013.

where D ∈ Rn×m denotes a dictionary matrix and a ∈ Rm is a sparse vector. If a has at most k nonzero entries, it is called k-sparse.
The dictionary D is overcomplete if n < m (fewer rows than columns). The columns of D are called the atoms of the dictionary.
The goal of sparse decomposition is to find a dictionary D so that each x ∈ X has a sparse representation.

Figure 18: Illustration of the sparse decomposition problem: it consists of two sub-problems - sparse coding and dictionary learning.

As illustrated in Fig. 18, the sparse decomposition problem can be further divided to two subproblems: sparse coding and dictionary
learning. Solving the optimal sparse vector α given the dictionary D is called sparse coding, while solving the optimal dictionary D

25 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

given the sparse vector α is called dictionary learning.

Sparse coding. Now let’s first look at the sparse coding model. It can be formulated as the minimization of the following objective
function:

min
a∈Rm

1

2
‖x−Da‖22 + λϕ(a), (46)

where the first term is called data fitting term, and the second term is called regularization term. The regularization term ϕ can be
one of the following forms:

• l2 norm, ‖a‖22 ,
∑m
i=1 a

2
i ,

• l1 norm, ‖a‖1 ,
∑m
i=1 |ai|, and

• l0 norm, ‖a‖0 , #{i|ai 6= 0}.

The above l0 norm and l1 norm are also called sparsity-inducing norms. Over the years, a number of algorithms have been designed
to solve the above sparse coding problem, including matching pursuit [Mallat and Zhang 1993], orthogonal matching pursuit [Tropp
and Gilbert 2007; Cai and Wang 2011], LASSO algorithm [Mairal et al. 2010], projected gradient descent algorithm [Lin 2007], and
so on. Since l0 norm regularization is more relevant to the skinning weight reduction and compression, in the course note, we will
focus on the sparse coding problem with l0 norm regularization.

The sparse coding problem with l0 norm regularization can often be reformulated as the following minimization problem.

min
a∈Rm

1

2
‖x−Da‖22 subject to ‖a‖0 ≤ L (47)

Two classical algorithms (matching pursuit [Mallat and Zhang 1993] and orthogonal matching pursuit [Tropp and Gilbert 2007; Cai
and Wang 2011]) can be used to solve the above minimization problem (Eq. (47)). The matching pursuit algorithm is described in
Algorithm 5. A simple example of matching pursuit algorithm [Cao 2014] is illustrated in Fig. 19.

Algorithm 5 Matching Pursuit Algorithm

Require: a data point x ∈ Rn, a dictionary matrix D ∈ Rn×m, the sparsity number L.
Ensure: a sparse vector a that satisfy Eq. (47).

1: Initialization: a = 0, residual r = x.
2: repeat
3: select the element with maximum correlation with r: î = arg maxi=1···m |dTi r|.
4: update the coefficients: aî = aî + dT

î
r.

5: update the residual: r = r− (dT
î
r)dî.

6: until ‖a‖0 ≥ L
7: return a

In the above basic (nonorthogonal) matching pursuit algorithm, the dictionary atoms are not mutually orthogonal vectors. Therefore,
subtracting subsequent residuals from the previous one can reintroduce components that are not orthogonal to the span of the
previously included atoms. In the orthogonal matching pursuit algorithm (Algorithm 6), the residual is always orthogonal to the
dictionary atoms that are already selected.

Algorithm 6 Orthogonal Matching Pursuit Algorithm

Require: a data point x ∈ Rn, a dictionary matrix D ∈ Rn×m, the sparsity number L.
Ensure: a sparse vector a that satisfy Eq. 47.

1: Initialization: a = 0, residual r = x, active set ω = ∅.
2: repeat
3: select the element with maximum correlation with r: î = arg maxi=1···m |dTi r|.
4: update the active set: ω = ω ∪ î.
5: update the coefficients: aω = (DT

ωDω)−1DT
ωr.

6: update the residual: r = r−Dωaω .
7: until ‖a‖0 ≥ L
8: return a

Dictionary learning. A number of dictionary learning algorithms have been proposed, including K-SVD algorithm for dictionary
learning with l0 norm regularization [Aharon et al. 2006], and online dictionary learning for l1 norm regularization [Mairal et al.

26 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Figure 19: An illustrative example of matching pursuit algorithm. Image courtesy of [Cao 2014].

2010]. In this course note, we briefly describe the K-SVD algorithm below. The K-SVD algorithm iteratively perform sparse coding
step and the dictionary update step until convergence.

(1) At the sparse coding stage, it minimizes the following objective function (assuming D is given).

min
A
‖X−DA‖2F ∀j, s. t. ‖aj‖0 ≤ L (48)

Since coefficients of each example can be updated independently at this step, for the j-th example, xi, we just need to solve an
ordinary sparse coding problem (using the above described matching pursuit algorithm or orthogonal matching pursuit algorithm),
described below.

min
a
‖Xj −Da‖22 s. t. ‖a‖0 ≤ L (49)

(2) At the dictionary learning stage, it minimizes the following objective function (assuming A is given).

min
D
‖X−DA‖2F ∀j, s. t. ‖aj‖0 ≤ L (50)

Its strategy is to update each atom dk sequentially. For the k-th atom, the following minimization equation is solved.

min
dk

‖dkaTk −Ek‖2F , where the residual Ek =
∑
i6=k

(dia
T
i −X) (51)

The above Eq. (51) can be further solved with SVD [Aharon et al. 2006], as follows:

Ek = UΛV ⇒ dk = u1 (52)

27 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

3.5.3 Solving of Sparse Matrix Factorization

Given the above formulated sparse matrix factorization problem (Eq. (44)), the next step of this approach is to efficiently solve this
matrix factorization problem with sparseness constraints. A variety of general matrix factorization solvers have been proposed [Lee
and Seung 1999; Mairal et al. 2010], including handle non-negativity constraint [Hoyer 2004]. Le and Deng [2013] proposed an
iterative solver to speed up the above weight matrix factorization with sparseness constraints, described below in Algorithm 7.

Algorithm 7 Skinning Weight Matrix Factorization with Sparseness Constraints

Require: a weight matrix W = [w1, . . . ,wn] ∈ Rm×n, an error threshold ε OR a maximum number of virtual bones Σ.
Ensure: D = [d1, . . . ,dq] ∈ Rm×q and A = [a1, . . . ,an] ∈ Rq×n s.t. Eq. (44)

1: Initialize a dictionary with q = 2 atoms: D = {d1,d2}
2: Initialize coefficients A according to D
3: repeat
4: for t = 1→ κ(∆W , q) do
5: Find vertex p with the largest approximation error
6: Add wp to the dictionary
7: Update coefficients A from vertex p
8: end for
9: repeat

10: Update dictionary D
11: for i = 1→ n do
12: Update coefficients A from vertex i
13: end for
14: until Convergence
15: until ∆W < ε OR q = Σ
16: return D and A

The pipeline of the above algorithm 7 can be described as follows: First, a minimum dictionary with 2 atoms and its corresponding
coefficients are initialized (line 1 and line 2). Then, atoms are sequentially added to the dictionary (line 4 to line 8) along with jointly
optimizing the dictionary and coefficients (line 9 to line 14) until error ∆W < ε or the size of the dictionary q = Σ.

(1) Initialization (line 1 and line 2). The first atom of the dictionary using the weights of a vertex with the largest `2-norm (i.e.,
d1 = arg maxwi ‖wi‖2). The second atom is initialized as the weights of another vertex with the smallest dot product to d1 (i.e.,
d2 = arg minwi {wi · d1}). The coefficients A can be solved per-vertex (column by column) by linear least squares with two
unknowns (corresponding to two atoms) as follows: ai = arg minx ‖Dx−wi‖22.

(2) Adding atoms (line 4 to line 8). In order to minimize ∆W , the weights of a vertex p that has the largest error to the dictionary is
always added as follows:

D← [D,wp] s.t. p = arg max
i
‖Dai −wi‖22 (53)

One straightforward way to add atoms would be to add atoms to the dictionary one by one and then perform a joint dictionary-
coefficients optimization. However, it is inefficient; instead, the algorithm 7 adds a batch of κ(∆W , q) atoms (line 4) before each
joint optimization. κ(∆W , q) is computed based on the current approximation error ∆W (D,A) (refer to Eq. (44a)) and the current
dictionary size q (Eq. (54)). Note that when each atom is added without dictionary optimization, coefficients still need to be updated
according to the added atom (line 7).

κ(∆W , q) = min{
(

∆W

ε
− 1

)
q + 1,Σ− q} (54)

(3) Dictionary update (line 10). At this step, an online dictionary update algorithm with warm restarts [Mairal et al. 2010] is
employed to do dictionary update due to its efficiency and simplicity. Specifically, Φ and Γ are first precomputed as follows:

Φ =

n∑
i=1

aiai
T = [φ1, . . . , φm] ∈ Rq×q (55a)

Γ =

n∑
i=1

wiai
T = [γ1, . . . , γm] ∈ Rm×q (55b)

28 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Then, each atom (column) dj of the dictionary can be efficiently updated as follows:

dj ←
1

ajj
(γj −Dφj) + dj (56)

After each atom update, the sparseness constraint in Eq. (44c) is enforced by keeping the c largest elements of vector dj , while
setting the others to be 0. Finally, the resulting dj is normalized to satisfy the affinity constraint by dividing dj by the sum of all the
elements.

(4) Coefficients update (line 7 and line 12). The challenge of coefficients update for each vertex is to find two optimum dictionary
atoms (i.e., virtual bones) that contribute to the vertex most. If the two optimum atoms are determined, the coefficients update
becomes a trivial least squares problem with two unknowns. Assuming the affinity constraint is imposed, and r and s are the two
identified optimum bones for updating coefficients of vertex i, then this least square problem can be described as follows, which can
be solved straightforwardly:

min
(ai)r
(ai)s

‖dr(ai)r + ds(ai)s −wi‖22 s.t. (ai)r + (ai)s = 1 (57)

The work of [Le and Deng 2013] introduces a fast coefficients update method, by assuming skinning weights are typically smooth
across neighboring vertices, that is, two neighboring vertices on a mesh might share the same optimum virtual bones. If the two
optimum atoms for vertex i are updated, it is expected the two atoms might be the optimal ones for its neighboring vertices. Thus, the
coefficients update step can be executed as a preorder graph traversal: the update process starts at a vertex with two known optimum
dictionary atoms and use these atoms as candidates to update the coefficients of its neighboring vertices; then the same process is
repeated for these neighboring vertices. Specifically, this recursive coefficients update can be implemented as a depth-first search on
a mesh edge-based graph (Algorithm 8).

Algorithm 8 CoefficientsUpdate(vertex i, candidate atoms dr , ds)

Require: vertex i, candidate atoms dr , ds
1: if the linear combination of dr and ds improves error Ei2 then
2: Update ai and Ei2(= ‖Dai −wi‖22) by linear least squares
3: for all j ∈ N (i) do
4: Find {r′, s′} ⊂ {r, s, ρj , σj} s.t. the linear combination of dr′ and ds′ best approximates wj

5: CoefficientsUpdate(j, dr′ , ds′)
6: end for
7: end if

(5) Dictionary-coefficients optimization (line 9 to line 14). The joint dictionary-coefficients optimization problem is solved by a
block coordinate descent approach with warm restarts [Nocedal and Wright 2000], that is, alternatively updating the dictionary (line
10) and coefficients (line 11 to line 13). With the warm restarts, its alternative update process can converge within a small number of
iterations, typically within 3 iterations.

3.5.4 Factorization with Example Poses

The above process does not utilize any example poses for skinning weight compression and reduction. However, if example poses
are available, it can also utilize them for a better approximation. In order to utilize the example poses, it needs to find a compression
model that best approximates given example poses, instead of a compression model that best approximates given dense skinning
weights. Specifically, it minimizes a quadratic error function on all the example poses given corresponding bone transformations, by
replacing the approximation error on skinning weights with the approximation error on example poses in the above sparse weight
matrix factorization (Algorithm 7).

Given the example poses and bone transformations, the optimized linear blend skinning (LBS) weights W∗ = [w∗1 , . . . ,w
∗
n] ∈

Rm×n is first solved using linear least squares with equality constraint (
∑m
j=1 (w∗i)j = 1) and inequality constraint (w∗i ≥ 0) [Le

and Deng 2012]. Note that the optimized weights W∗ are not constrained to be sparse.

Then, the approximation error on weight matrix ∆W
2 (Eq. (44)) is replaced with the approximation error on example poses ∆E

2

(Eq. (58a)). The approximation error for each vertex Ei2 (Eq. (58b)) is used to find new atoms for the dictionary (line 5 in Algorithm
7). Here, the approximation error is normalized by subtracting the lower bound E∗i

2 (i.e., the approximation error with the optimized
LBS weights w∗i , refer to Eq. (58c)) from it. Due to this modification, Ei2 in Algorithm 8 is obtained through Eq. (58b), instead of
the original ‖Dai −wi‖22. Also, the optimized weights W∗ (instead of W) are used to pre-compute matrix Γ in Eq. (55b).

29 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Figure 20: Qualitative comparisons among the two-layer sparse compression method [Le and Deng 2013], k-largest weight
reduction, smooth weight reduction [Landreneau and Schaefer 2010], geometric weight reduction [James and Twigg 2005], and
Poisson weight reduction [Landreneau and Schaefer 2010]). The used models are elephant-gallop with 15 bones (top-left) and
horse-collapse with 20 bones (top-right). In addition, “4 bones/vtx skinning decomposition" denotes the skinning model with 4 bones
per vertex that is directly computed by the smooth skinning decomposition approach [Le and Deng 2012]. Image courtesy of [Le and
Deng 2013]. Copyright ©ACM 2013.

∆E
2 =

1

3Sn

n∑
i=1

Ei
2 (58a)

Where: Ei2 =

S∑
t=1

∥∥∥∥∥
m∑
j=1

(Dai)j [Rt,j |Tt,j]vi − v′t,i

∥∥∥∥∥
2

2

− E∗i
2 (58b)

E∗i
2

=

S∑
t=1

∥∥∥∥∥
m∑
j=1

(w∗i)j [Rt,j |Tt,j]vi − v′t,i

∥∥∥∥∥
2

2

(58c)

3.6 Comparisons and Discussion of Weight Reduction and Compression Methods

Fig. 20 and Fig. 12 qualitatively compare all the above weight reduction and compression methods. The used 3D models are provided
by [Sumner and Popović 2004; Vlasic et al. 2008]. All the methods reduce the skinning models with dense weights (obtained via the
smooth skinning decomposition method [Le and Deng 2012]) to 4 bones per vertex. The methods noted with blue do not utilize
example poses, while the methods noted with red utilize example poses. As shown in these two figures, all the methods reduce
the skinning models with dense weights to 4 bones per vertex. We can further see that the weight reduction methods utilizing the
example poses always give better approximations than the same methods without utilizing the example poses. In general, the results
by the Poisson-based weight reduction method is smoother and more pleasing than those by the k-largest weight reduction, smooth
weight reduction, and geometric weight reduction methods. Meanwhile, without noticeable visual distortions, the two-layer sparse
compression method [Le and Deng 2013] approximates the original skinning models significantly better than the other four weight
reduction methods (i.e., smooth, Poisson, k-largest, and geometric). In particular, when the example poses are utilized, the two-layer
sparse compression method, with only 4 bone-blending operations per vertex, can compress and approximate the original models
as good as dense-weight skinning models. This approximation is even better than the employed original skinning decomposition
approach [Le and Deng 2012] with 4 bones per vertex, e.g. in the case of the elephant-gallop model.

Table 3 quantitatively compare all the above skinning weight reduction and compression methods. In this comparison, if example
poses are not utilized, all the three methods (k-largest, smooth, and two-layer) only perform reduction on the skinning weight matrix.
Two sets of input skinning models, generated by skinning decomposition [Le and Deng 2012], are used: skinning models with 8
bones per vertex and with dense bone-vertex weights. Using the three different methods, the skinning models with 8 bones per vertex
are reduced to 4 bones per vertex, and the skinning models with dense weights are reduced to 4 bones per vertex and 8 bones per
vertex, respectively. As shown in this table, regardless whether example poses are used, the two-layer sparse compression method
[Le and Deng 2013] can substantially outperform the other four weight reduction methods in terms of approximation error. In most
cases, the two-layer sparse compression method are even better than the employed original skinning decomposition approach [Le
and Deng 2012] with the same number of bones.

30 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

References

AHARON, M., ELAD, M., AND BRUCKSTEIN, A. 2006. k-svd: An algorithm for designing overcomplete dictionaries for sparse
representation. Signal Processing, IEEE Transactions on 54, 11, 4311–4322.

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-as-possible shape interpolation. In Proceedings of SIGGRAPH 2000,
157–164.

ANGUELOV, D., KOLLER, D., PANG, H.-C., SRINIVASAN, P., AND THRUN, S. 2004. Recovering articulated object models from
3D range data. In UAI’04: Proc. of Conference on Uncertainty in Artificial Intelligence, 18–26.

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S., RODGERS, J., AND DAVIS, J. 2005. Scape: Shape completion and
animation of people. ACM Trans. Graph. 24, 3 (July), 408–416.

BERTSEKAS, D. P. 1999. Nonlinear Programming, 2nd ed. Athena Scientific, Sept.

BJORCK, A. 1996. Numerical Methods for Least Squares Problems. Philadelphia.

BRICEÑO, H. M., SANDER, P. V., MCMILLAN, L., GORTLER, S., AND HOPPE, H. 2003. Geometry videos: a new representation
for 3d animations. In SCA’03: Proc. of Symposium on Computer Animation, 136–146.

CAI, T. T., AND WANG, L. 2011. Orthogonal matching pursuit for sparse signal recovery with noise. Information Theory, IEEE
Transactions on 57, 7, 4680–4688.

CAO, K., 2014. http://www.cse.msu.edu/∼cse902/s14/ppt/sparse%20coding%20and%20dictionary%20learning.pdf.

CHENG, Y. 1995. Mean shift, mode seeking, and clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on 17, 8,
790–799.

DE AGUIAR, E., THEOBALT, C., STOLL, C., AND SEIDEL, H.-P. 2007. Marker-less deformable mesh tracking for human shape
and motion capture. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, IEEE, 1–8.

DE AGUIAR, E., THEOBALT, C., THRUN, S., AND SEIDEL, H.-P. 2008. Automatic Conversion of Mesh Animations into
Skeleton-based Animations. vol. 27.

DE AGUIAR, E., STOLL, C., THEOBALT, C., AHMED, N., SEIDEL, H.-P., AND THRUN, S. 2008. Performance capture from
sparse multi-view video. ACM Transactions on Graphics (TOG) 27, 3, 98.

GILL, P., MURRAY, W., AND WRIGHT, M. 1981. Practical Optimization. Academic Press, London, UK.

GRIPPO, L., AND SCIANDRONE, M. 2000. On the convergence of the block nonlinear gauss–seidel method under convex constraints.
Operations Research Letters 26, 3, 127–136.

GUSKOV, I., AND KHODAKOVSKY, A. 2004. Wavelet compression of parametrically coherent mesh sequences. In SCA’04: Proc.
of Symposium on Computer Animation, 183–192.

HARKEGARD, O. 2002. Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation.
In Proc. of the 41st IEEE Conference on Decision and Control, IEEE, vol. 2, 1295–1300.

HASLER, N., THORMÄHLEN, T., ROSENHAHN, B., AND SEIDEL, H.-P. 2010. Learning skeletons for shape and pose. In Proc.
I3D.

HORN, B. K. P. 1987. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of
America 4, 4.

HOYER, P. O. 2004. Non-negative matrix factorization with sparseness constraints. The Journal of Machine Learning Research 5,
1457–1469.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3,
1134–1141.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh animations. ACM Trans. Graph. 24, 3, 399–407.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND SANOCKI, T. 2007. Harmonic coordinates for character articulation. ACM
Trans. Graph. 26, 3, 71.

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3,
561–566.

KABSCH, W. 1978. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A
34, 827–828.

KAVAN, L., MCDONNELL, R., DOBBYN, S., ŽÁRA, J., AND O’SULLIVAN, C. 2007. Skinning arbitrary deformations. In
Proceedings of the 2007 symposium on Interactive 3D graphics and games, ACM, 53–60.

31 of 35

http://www.google.com/search?q=k-svd:+An+algorithm+for+designing+overcomplete+dictionaries+for+sparse+representation
http://www.google.com/search?q=k-svd:+An+algorithm+for+designing+overcomplete+dictionaries+for+sparse+representation
http://www.google.com/search?q=As-rigid-as-possible+shape+interpolation
http://www.google.com/search?q=Recovering+articulated+object+models+from+3D+range+data
http://www.google.com/search?q=Recovering+articulated+object+models+from+3D+range+data
http://www.google.com/search?q=Scape:+Shape+completion+and+animation+of+people
http://www.google.com/search?q=Scape:+Shape+completion+and+animation+of+people
http://www.google.com/search?q=Geometry+videos:+a+new+representation+for+3d+animations
http://www.google.com/search?q=Geometry+videos:+a+new+representation+for+3d+animations
http://www.google.com/search?q=Orthogonal+matching+pursuit+for+sparse+signal+recovery+with+noise
http://www.google.com/search?q=http://www.cse.msu.edu/simcse902/s14/ppt/sparse%20coding%20and%20dictionary%20learning.pdf
http://www.google.com/search?q=Mean+shift,+mode+seeking,+and+clustering
http://www.google.com/search?q=Marker-less+deformable+mesh+tracking+for+human+shape+and+motion+capture
http://www.google.com/search?q=Marker-less+deformable+mesh+tracking+for+human+shape+and+motion+capture
http://www.google.com/search?q=Automatic+Conversion+of+Mesh+Animations+into+Skeleton-based+Animations
http://www.google.com/search?q=Automatic+Conversion+of+Mesh+Animations+into+Skeleton-based+Animations
http://www.google.com/search?q=Performance+capture+from+sparse+multi-view+video
http://www.google.com/search?q=Performance+capture+from+sparse+multi-view+video
http://www.google.com/search?q=On+the+convergence+of+the+block+nonlinear+gauss--seidel+method+under+convex+constraints
http://www.google.com/search?q=Wavelet+compression+of+parametrically+coherent+mesh+sequences
http://www.google.com/search?q=Efficient+active+set+algorithms+for+solving+constrained+least+squares+problems+in+aircraft+control+allocation
http://www.google.com/search?q=Learning+skeletons+for+shape+and+pose
http://www.google.com/search?q=Closed-form+solution+of+absolute+orientation+using+unit+quaternions
http://www.google.com/search?q=Non-negative+matrix+factorization+with+sparseness+constraints
http://www.google.com/search?q=As-rigid-as-possible+shape+manipulation
http://www.google.com/search?q=Skinning+mesh+animations
http://www.google.com/search?q=Harmonic+coordinates+for+character+articulation
http://www.google.com/search?q=Mean+value+coordinates+for+closed+triangular+meshes
http://www.google.com/search?q=A+discussion+of+the+solution+for+the+best+rotation+to+relate+two+sets+of+vectors
http://www.google.com/search?q=Skinning+arbitrary+deformations

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

KAVAN, L., SLOAN, P., AND O’SULLIVAN, C. 2010. Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29, 2,
327–336.

KIM, B.-U., FENG, W.-W., AND YU, Y. 2010. Real-time data driven deformation with affine bones. The Visual Computer 26, 6-8,
487–495.

KRUSKAL, J. B. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. of the American
Mathematical Society 7, 1 (Feb.), 48–50.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. Eigenskin: real time large deformation character skinning in hardware. In
Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 153–159.

KUHN, H. W., AND TUCKER, A. W. 1951. Nonlinear programming. 418–492.

LANDRENEAU, E., AND SCHAEFER, S. 2010. Poisson-based weight reduction of animated meshes. Comput. Graph. Forum 29, 6,
1945–1954.

LAWSON, C. L., AND HANSON, R. J. 1974. Solving least squares problems, vol. 161. SIAM.

LE, B. H., AND DENG, Z. 2012. Smooth skinning decomposition with rigid bones. ACM Trans. Graph. 31, 6.

LE, B. H., AND DENG, Z. 2013. Two-layer sparse compression of dense-weight blend skinning. ACM Trans. Graph. 32, 4.

LE, B. H., AND DENG, Z. 2014. Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph. 33, 4.

LEE, D. D., AND SEUNG, H. S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 6755,
788–791.

LIN, C.-J. 2007. Projected gradient methods for nonnegative matrix factorization. Neural computation 19, 10, 2756–2779.

MAIRAL, J., BACH, F., PONCE, J., AND SAPIRO, G. 2010. Online learning for matrix factorization and sparse coding. The Journal
of Machine Learning Research 11, 19–60.

MALLAT, S. G., AND ZHANG, Z. 1993. Matching pursuits with time-frequency dictionaries. Signal Processing, IEEE Transactions
on 41, 12, 3397–3415.

MARQUARDT, D. W. 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied
Mathematics 11, 2, 431–441.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3 (July),
562–568.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2005. Meshless deformations based on shape matching.
ACM Trans. Graph. 24, 3 (July), 471–478.

NG, A. Y., JORDAN, M. I., AND WEISS, Y. 2001. On spectral clustering: Analysis and an algorithm. In ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS, MIT Press, 849–856.

NOCEDAL, J., AND WRIGHT, S. 2000. Numerical Optimization. Springer.

PARK, S. I., AND HODGINS, J. K. 2006. Capturing and animating skin deformation in human motion. In ACM Transactions on
Graphics (TOG), vol. 25, ACM, 881–889.

PINKALL, U., AND POLTHIER, K. 1993. Computing discrete minimal surfaces and their conjugates. Experiment. Math. 2, 1, 15–36.

SCHAEFER, S., AND YUKSEL, C. 2007. Example-based skeleton extraction. In Proc. SGP.

SNYMAN, J. 2005. Practical mathematical optimization: an introduction to basic optimization theory and classical and new
gradient-based algorithms, vol. 97. Springer.

STOLL, C., GALL, J., DE AGUIAR, E., THRUN, S., AND THEOBALT, C. 2010. Video-based reconstruction of animatable human
characters. In ACM Transactions on Graphics (TOG), vol. 29, ACM, 139.

SUMNER, R., AND POPOVIĆ, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3, 399–405.

TROPP, J. A., AND GILBERT, A. C. 2007. Signal recovery from random measurements via orthogonal matching pursuit. Information
Theory, IEEE Transactions on 53, 12, 4655–4666.

TSENG, P. 2001. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of optimization
theory and applications 109, 3, 475–494.

UTAH, 2013. The utah 3D animation repository.

VLASIC, D., BARAN, I., MATUSIK, W., AND POPOVIĆ, J. 2008. Articulated mesh animation from multi-view silhouettes. ACM
Transactions on Graphics (TOG) 27, 3, 97.

32 of 35

http://www.google.com/search?q=Fast+and+efficient+skinning+of+animated+meshes
http://www.google.com/search?q=Real-time+data+driven+deformation+with+affine+bones
http://www.google.com/search?q=On+the+shortest+spanning+subtree+of+a+graph+and+the+traveling+salesman+problem
http://www.google.com/search?q=Eigenskin:+real+time+large+deformation+character+skinning+in+hardware
http://www.google.com/search?q=Nonlinear+programming
http://www.google.com/search?q=Poisson-based+weight+reduction+of+animated+meshes
http://www.google.com/search?q=Smooth+skinning+decomposition+with+rigid+bones
http://www.google.com/search?q=Two-layer+sparse+compression+of+dense-weight+blend+skinning
http://www.google.com/search?q=Robust+and+accurate+skeletal+rigging+from+mesh+sequences
http://www.google.com/search?q=Learning+the+parts+of+objects+by+non-negative+matrix+factorization
http://www.google.com/search?q=Projected+gradient+methods+for+nonnegative+matrix+factorization
http://www.google.com/search?q=Online+learning+for+matrix+factorization+and+sparse+coding
http://www.google.com/search?q=Matching+pursuits+with+time-frequency+dictionaries
http://www.google.com/search?q=An+algorithm+for+least-squares+estimation+of+nonlinear+parameters
http://www.google.com/search?q=Building+efficient,+accurate+character+skins+from+examples
http://www.google.com/search?q=Meshless+deformations+based+on+shape+matching
http://www.google.com/search?q=On+spectral+clustering:+Analysis+and+an+algorithm
http://www.google.com/search?q=Capturing+and+animating+skin+deformation+in+human+motion
http://www.google.com/search?q=Computing+discrete+minimal+surfaces+and+their+conjugates
http://www.google.com/search?q=Example-based+skeleton+extraction
http://www.google.com/search?q=Video-based+reconstruction+of+animatable+human+characters
http://www.google.com/search?q=Video-based+reconstruction+of+animatable+human+characters
http://www.google.com/search?q=Deformation+transfer+for+triangle+meshes
http://www.google.com/search?q=Signal+recovery+from+random+measurements+via+orthogonal+matching+pursuit
http://www.google.com/search?q=Convergence+of+a+block+coordinate+descent+method+for+nondifferentiable+minimization
http://www.google.com/search?q=The+utah+3D+animation+repository
http://www.google.com/search?q=Articulated+mesh+animation+from+multi-view+silhouettes

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

VLASIC, D., PEERS, P., BARAN, I., DEBEVEC, P., POPOVIĆ, J., RUSINKIEWICZ, S., AND MATUSIK, W. 2009. Dynamic shape
capture using multi-view photometric stereo. ACM Transactions on Graphics (TOG) 28, 5, 174.

YAMAUCHI, H., GUMHOLD, S., ZAYER, R., AND SEIDEL, H.-P. 2005. Mesh segmentation driven by gaussian curvature. The
Visual Computer 21, 8-10, 659–668.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND SHUM, H.-Y. 2004. Mesh editing with poisson-based gradient field
manipulation. In ACM Transactions on Graphics (TOG), vol. 23, ACM, 644–651.

ZHU, Y., AND GORTLER, S. J. 2007. 3D deformation using moving least squares. Tech. Rep. Tr-10-07, Harvard University,
Cambridge, MA.

ZOU, H., AND HASTIE, T. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 67, 2, 301–320.

33 of 35

http://www.google.com/search?q=Dynamic+shape+capture+using+multi-view+photometric+stereo
http://www.google.com/search?q=Dynamic+shape+capture+using+multi-view+photometric+stereo
http://www.google.com/search?q=Mesh+segmentation+driven+by+gaussian+curvature
http://www.google.com/search?q=Mesh+editing+with+poisson-based+gradient+field+manipulation
http://www.google.com/search?q=Mesh+editing+with+poisson-based+gradient+field+manipulation
http://www.google.com/search?q=3D+deformation+using+moving+least+squares
http://www.google.com/search?q=Regularization+and+variable+selection+via+the+elastic+net

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Dataset[# of bones]
Approximation error ERMS Execution time (minutes)
SMA LSSP SSDR SMA LSSP SSDR

camel-collapse11 125.3 (4) - 5.4(1.7) 13.8 - 7.4
camel-collapse20 - - 4(1.4) - - 15.1
camel-gallop10 - - 8.1(2.8) - - 6.1
camel-gallop20 - - 3.7(1.5) - - 13.9
camel-gallop29 17.6 (1.9) - 3(1.3) 25.2 - 21.9
camel-poses10 - - 10.1(3.9) - - 1
camel-poses25 8.3 (1.8) - 2.7(1.2) 9.4 - 4.6
cat-poses5 - - 26.3(12.5) - - 0.2
cat-poses7 - 21.2(9.3) 21.2(10.3) - 199 0.2
cat-poses9 - - 13.7(6.1) - - 0.3
cat-poses10 - 12.6(5.6) 13(5.7) - 240.8 0.3
cat-poses12 - - 8.6(3.8) - - 0.6
cat-poses15 - 10.7(6.1) 6.5(2.7) - 302.8 0.7
cat-poses20 - - 4.7(2) - - 1
cat-poses25 8.5 (3.1) 6.2(3.3) 3.4(1.4) 0.7 371.7 1.5
chickenCrossing10 - 20.9(14.9) 21.8(20.4) - 1091.2 4.9
chickenCrossing20 - 10.1(9.7) 8.7(5.7) - 1128.9 14.8
chickenCrossing28 12.5 (4.2) 6.2(5.1) 8.1(5.4) 14.1 1165.4 24
elephant-gallop10 - - 8.3(3.5) - - 15.7
elephant-gallop20 - - 4.3(2.3) - - 27.5
elephant-gallop27 5.6 (1.9) - 2.7(1.3) 56.1 - 53.6
elephant-poses10 - - 8.2(4.2) - - 3.2
elephant-poses21 5.8 (2.2) - 3.2(1.5) 29.4 - 8.1
face-poses9 - - 12(5.7) - - 2
face-poses27 - - 7(3.6) - - 7
face-poses36 37.6 (8.5) - - 3.6 - -
flamingo-poses5 - - 16.6(6.1) - - 0.8
flamingo-poses10 - - 4.8(2.2) - - 2
flamingo-poses23 5.7 (1.7) - 1.7(0.8) 16.3 - 5.1
horse-collapse3 139.5 (5.1) 51(3.1) 26.5(4.1) 3.3 856.6 0.8
horse-collapse10 - 15.5(2.6) 7.4(2.1) - 802 2.6
horse-collapse20 - 6(2) 5(1.6) - 1088.5 5.7
horse-gallop10 - 28.1(7.1) 8.3(3.6) - 754.1 2.4
horse-gallop20 - 15.7(5.3) 3.6(1.8) - 859.9 5.4
horse-gallop33 9.5 (1.5) 12.5(4.6) 2.2(1.1) 3.8 911 9.8
horse-poses10 - 18.8(7.7) 9(3.9) - 392.2 0.4
horse-poses20 - 20.6(7.8) 3.8(1.8) - 461.8 1.4
horse-poses30 - 2.8(1.4) 2.2(0.9) - 339.8 2.3
horse-poses42 4.7 (1.4) 2.2(1.2) - 2.1 475.1 -
lion-poses10 - 22.1(11) 11.3(5) - 201.3 0.2
lion-poses21 62.8 (5.7) 7.7(3.9) 4.4(2.2) 0.6 360.2 0.8
pcow10 - 16.5(13.2) 14.4(11.9) - 549.2 2.4
pcow24 24.8 (13.2) 7.2(6.7) 5.7(4.8) 3.8 564.5 8.9
pdance10 - 8(4.9) 6.3(3.4) - 2177.7 5.8
pdance24 3.8 (1.6) 3.4(2.3) 1.3(0.8) 22 2446.8 28.3
pjump10 - - 10(6.5) - - 14.3
pjump20 - - 6.7(4.7) - - 42.7
pjump30 - - 5.3(3.9) - - 72.9
pjump40 15.3 (6.7) - 4.5(3.4) 30.5 - 104.1
pkanga10 - 44.5(11.5) 17(7) - 247.1 1.5
pkanga20 - 32(8.5) 8.9(4.5) - 308.5 3.2
pkanga30 - 26.2(7.6) 7.8(4.1) - 320.1 5.3
pkanga39 134.1 (15.4) 22.4(7) 6.7(4.2) 1.6 360.7 7.6

Table 1: Rigid bone skinning decomposition results by the SMA [James and Twigg 2005], LSSP [Hasler et al. 2010], and the SSDR
algorithm [Le and Deng 2012]. The number of bones is denoted as the subscript of the dataset name. All the running times were
measured on the same computer with a 2GHz single core CPU. Note that the number of bones is automatically estimated in SMA,
thus its results are not available for many specific numbers of bones. The results of LSSP are also not available for models with more
than 10K vertices due to the large memory requirement in the Self-Tuning Spectral Clustering algorithm at the initialization step.
The results after rank-5 EigenSkin correction [Kry et al. 2002] are also reported in the parentheses.

34 of 35

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Mesh Animation Decomposition and Compression Binh H. Le and Zhigang Deng

Dataset N F B
Method I Method II Method III Method IV

Time RMSE Time RMSE Time RMSE Time RMSE

cat-poses 7207 9 28 5.8 0.25 0.1 0.68 6.9 1.04 17.2 0.63
horse-poses 8431 10 27 7.7 0.21 0.2 0.54 6.2 1.24 20.0 0.75
lion-poses 5000 9 30 4.1 0.27 0.1 0.83 4.0 1.62 11.7 1.14
horse-gallop 8431 48 27 41.9 0.22 0.8 0.44 33.3 1.10 80.3 0.88
hand 7997 43 18 65.1 0.18 0.6 0.23 20.0 0.42 41.9 0.18
dance 7061 201 16 148.7 0.22 2.5 0.76 61.8 0.78 168.0 0.53
scape 12500 70 23 252.1 0.42 1.7 1.03 60.7 1.18 410.4 1.24
samba 9971 175 22 348.2 0.56 3.3 1.29 95.1 1.57 296.0 1.79
cow 2904 204 11 72.3 1.52 1.0 5.41 16.0 5.61 47.9 5.58

Table 2: Quantitative comparisons among all the four methods. The reported RMSE is normalized by the bounding volume diagonal
[Schaefer and Yuksel 2007; Hasler et al. 2010]. Specifically, RMSE = 100 ×

√
ED/d, where ED is the data fitting error in

Eq. (24b), and d is the diagonal of the bounding box of the rest pose. The error is computed on the output using the joint rotation
representation to strictly enforce the joint constraints. The running time (in minutes) was recorded on the same off-the-shelf computer
with an Intel Xeon E5405 2.0GHz CPU. All the methods in this comparison were implemented in C++ with single thread.

Name[m]
8 to 4 bones/vertex Dense to 4 bones/vertex 4 b/v Dense to 8 bones/vertex 8 b/v Dense

k-Largest Smooth Two-layer Geometric Poisson Two-layer k-Largest Smooth Two-layer Geometric Poisson Two-layer SD k-Largest Smooth Two-layer Geometric Poisson Two-layer SD SD
samba10 10.6 11.5 5 9.4 10.5 4.8 11.8 12.7 4.8 10.5 11.6 4.7 5.7 5.1 5.3 4.8 4.8 5 4.8 4.9 4.8
samba20 5.7 6.5 2.3 5 5.8 2.1 7.6 8.3 2.4 6.8 7.6 2 2.7 3.8 4.4 2 3.1 3.7 1.9 2.2 1.9
camel-gallop15 8.3 9.7 1.6 6 8 1.4 13.1 14.9 1.5 9.5 11.9 1.3 2.3 5 6.5 1.3 3.2 4.2 1.3 1.6 1.3
camel-gallop30 8.1 9.4 1 4.9 7.6 0.8 13.8 15.5 2 8.3 10.6 0.8 1.3 7.5 9.2 0.7 3.7 5.4 0.4 0.8 0.3
elephant-gallop15 11.5 13.8 2.1 9.1 12.4 1.9 18.7 21.2 1.8 13.7 16.9 1.6 3.2 9 10.9 1.7 5.2 7.1 1.6 2 1.6
elephant-gallop30 4.5 5.4 1 3.3 4.8 0.8 13 15.2 1.5 9.1 11.3 0.7 1.5 6.6 8.3 0.7 4.2 5.8 0.5 0.9 0.4
horse-gallop15 9.5 10.3 2.6 7 8.2 2.3 20.7 23.5 2.4 10.1 11.5 2 3.2 5.9 6.9 1.9 3.9 4.7 1.9 2.5 1.9
horse-gallop30 5.4 5.7 1.2 3.8 4.5 1 18.1 20.8 3.4 12.3 14.7 1.6 1.8 9.6 11.6 1.6 5.3 6.7 0.8 0.9 0.5
camel-collapse20 10.6 12.4 1.8 6.2 8.4 1.5 15.5 17.4 1.9 10.3 13.4 1.4 2.8 7.2 9.5 1.2 3.6 5.4 1.1 1.5 1.1
camel-collapse40 6.9 7.6 1.6 4 5.8 1.2 15.1 16.4 3.1 9.8 12.5 1.5 2.1 9.2 11 1.5 4.5 6.5 0.8 1.1 0.5
horse-collapse20 12 13.4 3 7.2 9 2.1 17.9 20.3 3.5 11 13.5 2.1 3.2 8.4 10.5 1.9 4.2 5.5 1.4 1.9 1.3
horse-collapse40 8.2 8.4 2.8 4.4 5.6 2 17.8 20 4.8 10.1 12.6 2.5 2.3 10.9 12.8 2.9 4.9 6.4 1.3 1.3 0.6

Table 3: Comparison of the fitting errors on example poses (E) among the two-layer sparse compression method, k-largest weight
reduction, geometric weight reduction method [James and Twigg 2005], the smooth weight reduction method [Landreneau and
Schaefer 2010], and the Poisson weight reduction method [Landreneau and Schaefer 2010]. “SD" denotes the employed original
skinning decomposition method [Le and Deng 2012]. “b/v" denotes bones per vertex. The methods noted with blue do not utilize
example poses, while the methods noted with red utilize example poses. The numbers in blue denote results without utilizing example
poses, while the numbers in red with underline denote results with utilizing example poses. The number of bones m is shown as the
subscript of the input model name. For the sake of convenience, all the errors in this table are multiplied by 1000.

35 of 35

